Skip to main content
Log in

Turbulence Characteristics Of The Stable Boundary Layer Over A Mid-Latitude Glacier. Part Ii: Pure Katabatic Forcing Conditions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Observations obtained over a glacier surface in a predominantlykatabatic flow and with a distinctwind maximum below 13-m height are presented. The data werecollected using a 13-m high profilemast and two sonic anemometers (at about 2.5-m and 10-m heights).The spectra at frequencies belowthat of the turbulence range appear to deviate considerably fromthe curves obtained by Kaimal andco-workers during the 1968 Kansas experiment. The characteristicsof these deviations are compared tothe observations of others in surface-layers disturbed by anykind of large-scale outer-layer (orinactive) turbulence. In our case the disturbances arelikely to be induced by the highmountain ridges that surround the glacier. Moreover, the deviationsobserved in the cospectra seemto result from an, as yet, unspecified interaction between theinactive outer-layer turbulenceand the local surface-layer turbulence. Near the distinctwind maximum turbulence production ceasedwhile turbulence itself did not, probably the result ofturbulence transport from other levels. Consequently, we studied thelocal similarity relations using σw instead of u* as an alternative velocity scale. Wellbelow the wind maximum, and for relatively low stability(0< Rig <0.2), the flow behaves accordingto well established local-scaling similarity relationshipsin the stable boundary layer. For higherstability (Rig > 0.2), and near or above the wind maximum, the boundary-layer structure conforms tothat of z-less stratification suggesting that the eddy sizeis restricted by the local stability ofthe flow. In line with this we observed that the sensibleheat fluxes relate remarkably well to thelocal flow parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L.: 1987a, ‘SpectralMeasurements in a Disturbed Boundary Layer over Snow’, J. Atmos. Sci. 44, 1912–1939.

    Google Scholar 

  • Andreas, E. L.: 1987b, ‘A Theory for the Scalar Roughness and the Scalar Coefficients over Snow and Ice’, Boundary-Layer Meteorol. 38, 159–184.

    Google Scholar 

  • Arritt, R. W. and Pielke, R. A.: 1986, ‘Interactions of Nocturnal Slope Flows with Ambient Winds’, Boundary-Layer Meteorol. 37, 183–195.

    Google Scholar 

  • Barr, S. and Orgill, M. M.: 1989, ‘Influence of External Meteorology on Nocturnal Valley Drainage Flows’, J. Appl. Meteorol. 28, 497–517.

    Google Scholar 

  • Caughey, S. J.: 1977, ‘Boundary-Layer Turbulence Spectra in Stable Conditions’, Boundary-Layer Meteorol. 11, 3–14.

    Google Scholar 

  • Caughey, S. J. and Readings, C. J.: 1975, ‘An Observation of Waves and Turbulence in the Earth's Boundary Layer’, Boundary-Layer Meteorol. 9, 279–296.

    Google Scholar 

  • Csanady, G. T.: 1964, ‘Turbulent Diffusion in a Stratified Fluid’, J. Atmos. Sci. 21, 439–447.

    Google Scholar 

  • Denby, B.: 1999, ‘Second-Order Modelling of Turbulence in Katabatic Flows’, Boundary-Layer Meteorol. 92, 67–100.

    Google Scholar 

  • Doran, J. C. and Horst, T. W.: 1981, ‘Velocity and Temperature Oscillations in Drainage Winds’, J. Appl. Meteorol. 20, 361–364.

    Google Scholar 

  • Emmanuel, C. B.: 1973, ‘Richardson Number Profiles through Shear Instability Wave Regions Observed in the Lower Planetary Boundary Layer’, Boundary-Layer Meteorol. 5, 19–27.

    Google Scholar 

  • Forrer, J. and Rotach, M. W.: 1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’, Boundary–Layer Meteorol. 85, 111–136.

    Google Scholar 

  • Gill, A. E.: 1982, Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 1st edn., Academic Press Inc., New York, 643 pp.

    Google Scholar 

  • Greuell, W., Knap, W. H., and Smeet, P. C.: 1997, ‘Elevational Changes in Meteorological Variables along a Mid-Latitude Glacier during Summer’, J. Geophys. Res. 102(D22), 25954–25954.

    Google Scholar 

  • Hicks, B. B.: 1981, ‘An Examination of Turbulence Statistics in the Surface Boundary Layer’, Boundary-Layer Meteorol. 21, 389–402.

    Google Scholar 

  • Högström, U.: 1990, ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’, Boundary-Layer Meteorol. 47, 1949–1972.

    Google Scholar 

  • Hooke, W. H., Hall, F. F., Jr., and Gossard, E. E.: 1973, ‘Observed Generation of an Atmospheric Gravity Wave by Shear Instability in the Mean Flow of the Planetary Boundary Layer’, Boundary-Layer Meteorol. 5, 29–41.

    Google Scholar 

  • Horst, T. W. and Doran, J. C.: 1986, ‘Nocturnal Drainage Flow on Simple Slopes’, Boundary-Layer Meteorol. 34, 263–286.

    Google Scholar 

  • Horst, T. W. and Doran, J. C.: 1988, ‘The Turbulence Structure of Nocturnal Slope Flow’, J. Atmos. Sci. 45, 605–616.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815.

    Google Scholar 

  • Irwin, H. P. A. H.: 1974, ‘Measurements in a Self-Preserving Plane Wall Jet in a Positive Pressure Gradient’, J. Fluid Mech. 61, 33–63.

    Google Scholar 

  • Kader, G. and Yaglom, A. M.: 1990, ‘Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstable Thermal Stratification’, in O. Métais and M. Lesieur (eds.), Turbulence and Coherent Structures, Kluwer Academic Publishers, Dordrecht, Boston, pp. 388–412.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 653–689.

    Google Scholar 

  • Katul, G. and Chu, C. R.: 1998, ‘A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows’, Boundary-Layer Meteorol. 86, 279–312.

    Google Scholar 

  • Katul, G., Schieldge, J., Hseih, C. I., and Vidakovich, B.: 1998, ‘Skin Temperature Perturbations Induced by Surface Layer Turbulence above a Grass Surface’,Water Resour. Res. 34, 1265–1274.

    Google Scholar 

  • King, J. C., Mobbs, S. D., Darby, M. S., and Rees, J. M.: 1987, ‘Observations of an Internal Gravity Wave in the Lower Troposphere at Halley, Antarctica’, Boundary-Layer Meteorol. 39, 1–13.

    Google Scholar 

  • Launder, B. E. and Rodi, W.: 1983, ‘The Turbulent Wall Jet – Measurements and Modelling’, Annu. Rev. Fluid Mech. 15, 429–459.

    Google Scholar 

  • Lindzen, R. S.: 1974, ‘Stability of a Helmholtz Velocity Profile in a Continuously Stratified, Infinite Boussinesq Fluid – Applications to Clear Air Turbulence’, J. Atmos. Sci. 31, 1507–1514.

    Google Scholar 

  • Lindzen, R. S. and Rosenthal, A. J.: 1976, ‘On the Stability of Hemholtz Velocity Profiles in Stably Stratified Fluids when a Lower Boundary is Present’, J. Geophys. Res. 81, 1561–1571.

    Google Scholar 

  • Manins, P. C.: 1992, ‘Vertical Fluxes in Katabatic Flows’, Boundary-Layer Meteorol. 60, 169–178.

    Google Scholar 

  • Manins, P. C. and Sawford, B. L.: 1979, ‘Katabatic Winds: A Field Case Study’, Quart. J. Roy. Meteorol. Soc. 105, 1011–1025.

    Google Scholar 

  • Maslowe, S. A.: 1973, ‘Finite-Amplitude Kelvin–Helmholtz Billows’, Boundary-Layer Meteorol. 5, 43–52.

    Google Scholar 

  • Mastrantonio, G., Einaudi, F., Fua, D., and Lalas, D. P.: 1976, ‘Generation of Gravity Waves by Jet Streams in the Atmosphere’, J. Atmos. Sci. 33, 1730–1738.

    Google Scholar 

  • McIntyre, M. E. and Weissman, M. A.: 1978, ‘On Radiating Instabilities and Resonant Overreflection’, J. Atmos. Sci. 35, 1190–1196.

    Google Scholar 

  • McNaughton, K. G. and Laubach, J.: 2000, ‘Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion’, Boundary-Layer Meteorol. 96, 143–185.

    Google Scholar 

  • Miles, J. W. and Howard, L. N.: 1964, ‘Note on a Heterogeneous Shear Flow’, J. Fluid Mech. 20, 331–336.

    Google Scholar 

  • Munro, D. S.: 1989, ‘Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation’, J. Glaciol. 35(121), 344–348.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulence Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.

    Google Scholar 

  • Oerlemans, J.: 1994, ‘Quantifying Global Warming from the Retreat of Glaciers’, Science 264, 243–245.

    Google Scholar 

  • Oerlemans, J., Björnsson, H., Kuhn, M., Obleitner, F., Palsson, F., Smeets, C. J. P. P., Vugts, H. F., and de Wolde, J.: 1999, ‘Glacio-Meteorological Investigations on Vatnajökull, Iceland, Summer 1996: An Overview’, Boundary-Layer Meteorol. 92, 3–26.

    Google Scholar 

  • Pearson, H. J., Puttock, J. S., and Hunt, J. C. R.: 1983, ‘A Statistical Model of Fluid-ElementMotions and Vertical Diffusion in a Homogeneous Stratified Turbulent Flow’, J. Fluid Mech. 129, 219–249.

    Google Scholar 

  • Rees, J. M. and Mobbs, S. D.: 1988, ‘Studies of Internal Gravity Waves at Halley Base, Antarctica, Using Wind Observations’, Quart. J. Roy. Meteorol. Soc. 114, 939–966.

    Google Scholar 

  • Schumann, U. and Gerz, T.: 1995, ‘Turbulent Mixing in Stably Stratified Shear Flows’, J. Appl. Meteorol. 34, 33–48.

    Google Scholar 

  • Smedman, A., Bergström, H., and Högström, H.: 1995, ‘Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet’, Boundary-Layer Meteorol. 76, 211–232.

    Google Scholar 

  • Smeets, C. J. P. P., Duynkerke, P. G., and Vugts, H. F.: 1998, ‘Turbulence Characteristics of the Stable Boundary Layer over a Mid-Latitude Glacier. Part I: A Combination of Katabatic and Large-Scale Forcing’, Boundary-Layer Meteorol. 87, 117–145. STABLE BOUNDARY LAYER OVER A MID-LATITUDE GLACIER. II 107

    Google Scholar 

  • Smeets, C. J. P. P., Duynkerke, P. G., and Vugts, H. F.: 1999, ‘ObservedWind Profiles and Turbulence Fluxes over an Ice Surface with Changing Surface Roughness’, Boundary-Layer Meteorol. 92, 101–123.

    Google Scholar 

  • Stone, G. L. and Hoard, D. E.: 1989, ‘Low-Frequency Velocity and Temperature Fluctuations in Katabatic Valley Flows’, J. Appl. Meteorol. 28, 477–488.

    Google Scholar 

  • Townsend, A. A.: 1961, ‘Equilibrium Layers and Wall Turbulence’, J. Fluid Mech. 11, 97–120.

    Google Scholar 

  • Turner, J. S.: 1973, ‘Buoyancy Effects in Fluids’, Cambridge Monographs on Mechanics and Applied Mathematics, 1st edn., Cambridge University Press, London, 359 pp.

    Google Scholar 

  • Van den Broeke, M. R.: 1997, ‘Structure and Diurnal Variation of the Atmospheric Boundary Layer over a Mid-Latitude Glacier in Summer’, Boundary-Layer Meteorol. 83, 183–205.

    Google Scholar 

  • Van der Avoird, E. and Duynkerke, P. G.: 1999, ‘Turbulence in a Katabatic Flow. Does it Resemble Turbulence in a Stable Boundary Layer over Flat Surfaces?’, Boundary-Layer Meteorol. 92, 39–66.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulence Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeets, C.J.P.P., Duynkerke, P.G. & Vugts, H.F. Turbulence Characteristics Of The Stable Boundary Layer Over A Mid-Latitude Glacier. Part Ii: Pure Katabatic Forcing Conditions. Boundary-Layer Meteorology 97, 73–107 (2000). https://doi.org/10.1023/A:1002738407295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002738407295

Navigation