Skip to main content
Log in

THE EFFECTS OF HIGHER EULERIAN VELOCITY MOMENTS ON THE MEAN CONCENTRATION DISTRIBUTION

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this paper, we present a well-mixed Lagrangian stochasticmodel for vertical dispersion, that can accommodate a Eulerianprobability density function of vertical velocity derived from themaximum missing information (or maximum entropy) principle. Withthis model, we study the effects of skewness (S) and kurtosis (K) ofvertical velocity on the spacial distribution of the mean concentrationdue to sources in the convective boundary layer. Model calculationsshow that the maximum ground-level concentration increases withincreasing S and decreasing K, but the downstream distance to thelocation of the maximum ground-level concentration is ratherinsensitive to S and K. Some earlier predictions of vertical dispersionfor short travel time are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baerentsen, J. H. and Berkowicz, R.: 1984, ‘Monte Carlo Simulation of Plume Dispersion the Convective Boundary Layer’, Atmos. Environ. 18, 701–712.

    Google Scholar 

  • Briggs, G. A.: 1985, ‘Analytical Parameterizations of Diffusion: The Convective Boundary Layer’, J. Appl. Meteorol. 24, 1167–1186.

    Google Scholar 

  • Briggs, G. A.: 1993, ‘Plume Dispersion in the Convective Boundary Layer. Part II: Analysis of CONDORS Field Experiment Data’, J. Appl. Meteorol. 32, 1388–1425.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, ‘Some Aspects of Turbulence Structure Through the Depth of the Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 811–827.

    Google Scholar 

  • Deardorff, J.W. and Willis, G.E.: 1974, ‘Computer andLaboratoryModelling of theVertical Diffusion of Nonbuoyant Particles in the Mixed Layer’, Advances in Geophysics 18B, H.E. Landsberg and J. van Mieghem (eds.), Academic Press, 187–200.

  • Du, S., Wilson, J. D., and Yee, E.: 1994, ‘Probability Density Function for Velocity in the Convective Boundary Layer and Implied Trajectory Models’, Atmos. Environ. 28, 1211–1217.

    Google Scholar 

  • Du, S., Sawford, B. L., Wilson, J. D., and Wilson, D. J.: 1995, ‘Estimation of the Kolmogorov Constant (C 0) for the Lagrangian Structure Function, Using a Second-Order Lagrangian Model of Grid Turbulence’, Physics of Fluids 7, 3083–3090.

    Google Scholar 

  • Hunt, J. C. R.: 1985, ‘Turbulent Diffusion from Sources in Complex Flows’, Ann. Rev. Fluid Mech. 17, 447–485.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1988, ‘Eddy Structure in the Convective Boundary Layer-New Measurements and New Concepts', Quart. J. Roy. Meteorol. Soc. 114, 827–858.

    Google Scholar 

  • Lamb, R. G.: 1982, ‘Diffusion in the Convective Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, Reidel, 159–229.

  • LeMone, M. A.: 1990, ‘Some Observations of Vertical Velocity Skewness in the Convective Planetary Boundary Layer’, J. Atmos. Sci. 47, 1163–1169.

    Google Scholar 

  • Lenschow, D. H., Wyngaard, J. C., and Pennel, W. T.: 1980, ‘Mean-Field and Second-Moment Budgets in a Baroclinic Convective Boundary Layer’, J. Atmos. Sci. 37, 1313–1326.

    Google Scholar 

  • Lenschow, D. H., Mann, J., and Kristensen, L.: 1994, ‘How Long is Long Enough when Measuring Fluxed and Other Turbulence Statistics?’, J. Atmos. Oceanic Tech. 11, 661–673.

    Google Scholar 

  • Luhar, A. K. and Britter, R. E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogenous Turbulence in a Convective Boundary Layer’, Atmos. Environ. 23, 1911–1924.

    Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, John Wiley & Sons, 239 pp.

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics, Vol. 2, MIT Press.

  • Nieuwstadt, F. T. M.: 1980, ‘Applications of Mixed-Layer Similarity to the Observed Dispersion from a Ground-Level Source’, J. Appl. Meteorol. 19, 157–162.

    Google Scholar 

  • Raupach, M. R.: 1989, ‘A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies’, Quart. J. Roy. Meteorol. Soc. 115, 609–632.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1987, ‘Lagrangian Stochastic Analysis of Flux-Gradient Relationships in the Convective Boundary Layer’,J. Atmos. Sci. 44, 1152–1165.

    Google Scholar 

  • Sorbjan, Z.: 1991, ‘Evaluation of Local Similarity Functions in the Convective Boundary Layer’, J. Appl. Meteorol. 30, 1565–1583.

    Google Scholar 

  • Thomson, D. J.: 1984, ‘RandomWalk Modelling of Diffusion in Inhomogeneous Turbulence’, Quart. J. Roy. Meteorol. Soc . 110, 1107–1120.

    Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • van Dop, H., Nieuwstadt, F. T. M., and Hunt, J. C. R.: 1985, ‘Random Walk Models for Particle Displacements in Inhomogeneous Unsteady Turbulent Flows’, Phys. Fluids 28, 1639–1653.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1981, ‘A Laboratory Study of Dispersion from a Source in the Middle of the Convective Boundary Layer’, Atmos. Environ. 15, 109–117.

    Google Scholar 

  • Wilson, J. D. and Flesch, T.: 1993, ‘Flow Boundaries in Random-Flight Dispersion Models: Enforcing the Will-Mixed Condition’, J. Appl. Meteorol. 32, 1695–1707.

    Google Scholar 

  • Wilson, J. D., Legg, B. J., and Thomson, D. J.: 1983, ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Variance’, Boundary-layer Meteorol. 27, 163–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DU, S. THE EFFECTS OF HIGHER EULERIAN VELOCITY MOMENTS ON THE MEAN CONCENTRATION DISTRIBUTION. Boundary-Layer Meteorology 82, 317–341 (1997). https://doi.org/10.1023/A:1000285315013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000285315013

Keywords

Navigation