Skip to main content
Log in

Brief Report: Pitocin Induction in Autistic and Nonautistic Individuals

  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Oxytocin plays an important role in social-affiliative behaviors. It has been proposed that exposure to high levels of exogenous oxytocin at birth, via pitocin induction of delivery, might increase susceptibility to autism by causing a downregulation of oxytocin receptors in the developing brain. This study examined the rates of labor induction using pitocin in children with autism and matched controls with either typical development or mental retardation. Birth histories of 41 boys meeting the criteria for autistic disorder were compared to 25 age- and IQ-matched boys without autism (15 typically developing and 10 with mental retardation). There were no differences in pitocin induction rates as a function of either diagnostic group (autism vs. control) or IQ level (average vs. subaverage range), failing to support an association between exogenous exposure to oxytocin and neurodevelopmental abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Argiolas, A., & Gessa, G. L. (1991). Central functions of oxytocin. Neuroscience and Biobehavioral Review, 15, 217–231.

    Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Google Scholar 

  • Barberis, C., & Tribollet, E. (1996). Vasopressin and oxytocin receptors in the central nervous system. Critical Reviews in Neurobiology, 10, 119–154.

    PubMed  Google Scholar 

  • Fein, D., Allen, D., Dunn, M., Feinstein, C., Green, L., Morris, R., Rapin, I., & Waterhouse, L. (1997). Pitocin induction and autism. American Journal of Psychiatry, 154, 438–439.

    Google Scholar 

  • Ferris, C. F. (2000). Adolescent stress and neural plasticity in hamsters: A vasopressin-serotonin model of inappropriate aggressive behavior. Experimental Physiology, 85, 85–90.

    PubMed  Google Scholar 

  • Goldberg, J., Szatmari, P., & Nahmias, C. (1999). Imaging of autism: Lessons from the past to guide studies in the future. Canadian Journal of Psychiatry, 44, 793–801.

    Google Scholar 

  • Green, L. A., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L., & Morris, M. (2001). Oxytocin and autistic disorder: Alterations in peptide forms. Biological Psychiatry, 50, 609–613.

    PubMed  Google Scholar 

  • Hollander, E., Cartwright, C., Wong, C., DeCaria, C. M., DelGiudice-Asch, G., Buchsbaum, M. S., & Aronowitz, B. R. (1998). A dimensional approach to the autism spectrum. CNS Spectrum, 3, 18–39.

    Google Scholar 

  • Insel, T. R. (1992). Oxytocin: A neuropeptide for affiliation. Psychoneuroendocrinology, 17, 3–35.

    PubMed  Google Scholar 

  • Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry, 154, 726–735.

    PubMed  Google Scholar 

  • Insel, T. R., O'Brien, D. J., & Leckman, J. F. (1999). Oxytocin, vasopressin and autism: Is there a connection? Biological Psychiatry, 45, 145–157.

    PubMed  Google Scholar 

  • Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. National Review of Neuroscience, 2, 129–136.

    Google Scholar 

  • International Molecular Genetic Study of Autism Consortium (2001). A genome-wide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p. American Journal of Human Genetics, 69, 570–581.

    Google Scholar 

  • Landgraf, R. (1995). Intracerebrally released vasopressin and oxytocin: Measurement, mechanisms, and behavioral consequences. Journal of Neuroendrocrinology, 7, 243–253.

    Google Scholar 

  • Leiter, R. G. (1948). Leiter International Performance Scale. Chicago: Stoelting.

    Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.

    PubMed  Google Scholar 

  • Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism Diagnostic Interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.

    PubMed  Google Scholar 

  • Meisenberg, G., & Simmons, W. H. (1983). Centrally mediated effects of neurohypophyseal hormones. Neuroscience and Biobehavioral Review, 7, 263–280.

    Google Scholar 

  • Modahl, C., Fein, D., Waterhouse, L., & Newton, N. (1992). Does oxytocin deficiency mediate social deficits in autism? Journal of Autism and Developmental Disorders, 22, 449–451. Letter.

    PubMed  Google Scholar 

  • Modahl, C., Green, L., Fein, D., Morris, M., Waterhouse, L., Feinstein, C., & Levin, H. (1998). Plasma oxytocin levels in autistic children. Biological Psychiatry, 43, 270–277.

    PubMed  Google Scholar 

  • Panksepp, J. (1992). Oxytocin effects on emotional processes: Separation distress, social bonding, and relationships to psychiatric disorders. Annals of the New York Academy of Sciences, 652, 243–252.

    PubMed  Google Scholar 

  • Panksepp, J. (1993). Commentary on the possible role of oxytocin in autism (letter). Journal of Autism and Developmental Disorders, 23, 567–569.

    PubMed  Google Scholar 

  • Piven, J., Simon, J., Chase, G. A., Wzorek, M., Landa, R., Gayle, J., & Folstein, S. (1993). The etiology of autism: Pre-, peri-, and neonatal factors. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 1256–1263.

    PubMed  Google Scholar 

  • Schopler, E., Reichler, R. J., & Renner, R. (1988). The Childhood Autism Rating Scale (CARS). Western Psychological Services.

  • Stribley, J. M., & Carter, C. S. (1999). Developmental exposure to vasopressin increases aggression in adult prairie voles. Proceedings of the National Academy of Sciences, 96, 12601–12604.

    Google Scholar 

  • Szatmari, P. (1999). Heterogeneity and the genetics of autism. Journal of Psychiatry and Neuroscience, 24, 159–165.

    PubMed  Google Scholar 

  • van Wimersma Greidanus, T. B., Kroodsma, J. M., Pot, M. L., Stevens, M., & Maigret, C. (1990). Neurohypophyseal hormones and excessive grooming behavior. European Journal of Pharmacology, 187, 1–8.

    PubMed  Google Scholar 

  • Waterhouse, L., Fein, D., & Modahl, C. (1996). Neurofunctional mechanisms in autism. Psychology Review, 103, 457–489.

    Google Scholar 

  • Wechsler, D. (1991). Manual for the Wechsler Intelligence Scale for Children-Third Edition. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Zager, E. L., & Black, P. M. (1985). Neuropeptides in human memory and learning processes. Neurosurgery, 17, 355–369.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Ozonoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, S., Ozonoff, S. & Lainhart, J. Brief Report: Pitocin Induction in Autistic and Nonautistic Individuals. J Autism Dev Disord 33, 205–208 (2003). https://doi.org/10.1023/A:1022951829477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022951829477

Navigation