Skip to main content
Log in

Multifractal Modeling and Lacunarity Analysis

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The so-called “gliding box method” of lacunarity analysis has been investigated for implementing multifractal modeling in comparison with the ordinary box-counting method. Newly derived results show that the lacunarity index is associated with the dimension (codimension) of fractal, multifractal and some types of nonfractals in power-law relations involving box size; the exponent of the lacunarity function corresponds to the fractal codimension (E – D) for fractals and nonfractals, and to the correlation codimension (E – τlpar;2)) for multifractals. These results are illustrated with two case studies: De Wijs's zinc concentration values from the Pulacayo sphalerite-quartz vein in Bolivia and Cochran's tree seedlings example. Both yield low lacunarities and slightly depart from translational invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Agterberg, F. P., 1993, Calculation of the variance of mean values for blocks in regional resource evaluation studies: Nonrenewable Resources, v. 2,no. 4, p. 312–324.

    Google Scholar 

  • Agterberg, F. P., 1994, Fractals, multifractals, and change of support, in Dimitrakopoulus, R., ed., Geostatistics for the next century: Kluwer Acad. Publ., Dordrecht, p. 223–234.

    Google Scholar 

  • Allain, C., and Cloitre, M., 1991, Characterizing the lacunarity of random and deterministic fractal sets: Physical Review A, v. 44,no. 6, p. 3552–3558.

    Google Scholar 

  • Cheng, Q., 1994, Multifractal modeling and spatial analysis with GIS: gold potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia: unpubl. doctoral dissertation, Univ. Ottawa (Canada), 268 p.

  • Cheng, Q., 1997, Discrete multifractals: Math. Geology, v. 29,no. 2, p. 245–266.

    Google Scholar 

  • Cheng, Q., and Agterberg, F. P., 1995, Multifractal modeling and spatial point processes: Math. Geology, v. 27,no. 7, p. 831–845.

    Google Scholar 

  • Cheng, Q., and Agterberg, F. P., 1996a, Multifractal modeling and spatial statistics: Math. Geology, v. 28,no. 1, p. 1–16.

    Google Scholar 

  • Cheng, Q., and Agterberg, F. P., 1996b, Comparison between two types of multifractal modeling: Math. Geology, v. 28,no. 8, p. 1001–1015.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., and Bonham-Carter, G. P., 1995, GIS treatment of multifractality of spatial objects, in Proc. Geomatics '95 on CDRom available from Surveys and Mapping Branch, NRCan, 615 Booth Street, Ottawa, Canada.

  • Cheng, Q., Agterberg, F. P., and Bonham-Carter, G. P., 1996, Fractal pattern integration for mineral potential mapping: Nonrenewable Resources, v. 5,no. 2, p. 117–130.

    Google Scholar 

  • Cochran, W. G., 1963, Sampling techniques (2nd ed.): John Wiley & Sons, New York, 413 p.

    Google Scholar 

  • De Wijs, H. J., 1951, Statistics of ore distribution: Geologie en Mijnbouw, v. 13,no. 8, p. 365–375.

    Google Scholar 

  • Evertsz, C. J. G., and Mandelbrot, B. B., 1992, Multifractal measures, in Peitgen, H.-O., Jürgens, H., and Saupe, D., eds., Chaos and Fractals: Springer-Verlag, New York, p. 922–953.

    Google Scholar 

  • Feder, J., 1988, Fractals: Plenum Press, New York, 283 p.

    Google Scholar 

  • Gefen, Y., Meir, Y., and Aharony, A., 1983, Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices: Physical Review Letters, v. 50,no. 3, p. 145–148.

    Google Scholar 

  • Gefen, Y., Aharony, Y., and Mandelbrot, B. B., 1984, Phase transitions on fractals: III. Infinitely ramified lattices: Physics A: Mathematical and General, v. 17,no. 6, p. 1277–1289.

    Google Scholar 

  • Henebry, G. M., and Kux, H. J. H., 1995, Lacunarity as a texture measure for SAR imagery: Intern. Jour. Remote Sensing, v. 16,no. 3, p. 565–571.

    Google Scholar 

  • Lin, B., and Yang, Z. R. 1986, A suggested lacunarity expression for Sierpinski carpets: Jour. Physics A: Mathematical and General, v. 19,no. 2, L49–L52.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The fractal geometry of nature (updated and augmented edition): W. H. Freeman and Company, New York, 468 p.

    Google Scholar 

  • Plotnick, R. E., Gardner, R. H., and O'Neill, R. V., 1993, Lacunarity indices as measures of landscape texture: Landscape Ecology, v. 8,no. 3, p. 201–211.

    Google Scholar 

  • Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Prestegaard, K., and Perlmutter, M., 1996, Lacunarity analysis: a general technique for the analysis of spatial patterns: Physical Review E, v. 53,no. 5, p. 1–8.

    Google Scholar 

  • Schertzer, D., and Lovejoy, S., eds., 1991a, Non-linear variability in geophysics: Kluwer Acad. Publ., Dordrecht, 318 p.

    Google Scholar 

  • Schertzer, D., and Lovejoy, S., 1991b, Nonlinear geodynamical variability: Multiple singularities, universality and observations, in Schertzer, D., and Lovejoy, S., eds., Non-linear Variability in Geophysics: Kluwer Acad. Publ., Dordrecht, p. 41–82.

    Google Scholar 

  • Stanley, H., and Meakin, P., 1988, Multifractal phenomena in physics and chemistry: Nature, v. 335,no. 6189, p. 405–409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q. Multifractal Modeling and Lacunarity Analysis. Mathematical Geology 29, 919–932 (1997). https://doi.org/10.1023/A:1022355723781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022355723781

Navigation