Skip to main content
Log in

The Exact Interface Model for Wetting in the Two-Dimensional Ising Model

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We use exact methods to derive an interface model from an underlying microscopic model, i.e., the Ising model on a square lattice. At the wetting transition in the two-dimensional Ising model, the long Peierls contour (or interface) gets depinned from the substrate. Using exact transfer-matrix methods, we find that on sufficiently large length scales (i.e., length scales sufficiently larger than the bulk correlation length) the distribution of the long contour is given by a unique probability measure corresponding to a continuous “interface model.” The interface binding “potential” is a Dirac delta function with support on the substrate and, therefore, a distribution rather than a function. More precisely, critical wetting in the two-dimensional Ising model, viewed on length scales sufficiently larger than the bulk correlation length, is described by a reflected Brownian motion with a Dirac δ perturbation on the substrate so that exactly at the wetting transition the substrate is a perfectly reflecting surface; otherwise there exists a δ perturbation. A lattice solid-on-solid model was found to give identical results (albeit with modified parameters) on length scales sufficiently larger than the lattice spacing, thus demonstrating the universality of the continuous interface model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Cahn, J. Chem. Phys. 66:3667 (1977).

    Google Scholar 

  2. H. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49: 1565 (1982).

    Google Scholar 

  3. D. B. Abraham, Phys. Rev. Lett. 44: 1165 (1980).

    Google Scholar 

  4. R. Lipowsky, D. M. Kroll, and R. K. P. Zia, Phys. Rev. B 27: 4499 (1983).

    Google Scholar 

  5. E. Brézin, B. Halperin, and S. Leibler, J. Phys. (Paris) 44:775 (1983).

    Google Scholar 

  6. D. S. Fisher and D. A. Huse, Phys. Rev. B 32: 247 (1985).

    Google Scholar 

  7. R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. 57: 2411 (1986); Phys. Rev. B 36:2126 (1987).

    Google Scholar 

  8. M. E. Fisher and A. J. Jin, Phys. Rev. B 44:1430 (1991); Phys. Rev. Lett. 69:792 (1992); A. J. Jin and M. E. Fisher, Phys. Rev. B 47:7365 (1993); Phys. Rev. B 48:2642 (1993).

    Google Scholar 

  9. C. J. Boulter and J. O. Indekeu, Phys. Rev. E 56: 5734 (1997).

    Google Scholar 

  10. Further developments of this approach include the incorporation of order-parameter fluctuations close to the substrate through the introduction of a second (lower) “interfacelike” degree of freedom, y < ( x ), which is coupled to the (upper) wetting interface, y > ( x ) > y < ( x )0, leading to an effective two-interface Hamiltonian, \(H\) eff[y <, y >]. See C. J. Boulter and A. O. Parry, Phys. Rev. Lett. 74:3403 (1995); A. O. Parry and C. J. Boulter, Physica A 218:77 (1995); C. J. Boulter and A. O. Parry, Physica A 218:109 (1995).

    Google Scholar 

  11. C. J. Boulter, Phys. Rev. Lett. 79:1897 (1997).

    Google Scholar 

  12. P. J. Upton, Phys. Rev. E 60:R3475 (1999).

    Google Scholar 

  13. D. B. Abraham and E. R. Smith, Phys. Rev. B 26:1480 (1982); J. Statist. Phys. 43:621 (1986).

    Google Scholar 

  14. See, e.g., I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus (Springer-Verlag, New York, 1988).

  15. D. B. Abraham, Phys. Rev. Lett. 47:545 (1981).

    Google Scholar 

  16. M. P. A. Fisher, D. S. Fisher, and J. D. Weeks, Phys. Rev. Lett. 48:368 (1982).

    Google Scholar 

  17. S. Albeverio, Ph. Blanchard, and Z. M. Ma, in International Series of Numerical Mathematics (Birkhäuser Verlag, Basel, 1991), Vol. 102, p. 1.

    Google Scholar 

  18. S. Albeverio, G. W. Johnson, and Z. M. Ma, Acta Appl. Math. 42:267 (1996).

    Google Scholar 

  19. B. Simon, in Proceedings Mathematical Quantum Theory II: Schrödinger Operators, J. Feldman, R. Froese, and L. M. Rosen, eds. (American Mathematical Society, Providence, RI, 1995).

    Google Scholar 

  20. T. W. Burkhardt, Phys. Rev. B 40:6987 (1989).

    Google Scholar 

  21. D. B. Abraham, N. M. Švrakić, and P. J. Upton, Phys. Rev. Lett. 68:423 (1992).

    Google Scholar 

  22. M. E. Fisher, private communication (University of Maryland at College Park).

  23. See also D. B. Abraham and J. De Coninck, J. Phys. A 16:L333 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upton, P.J. The Exact Interface Model for Wetting in the Two-Dimensional Ising Model. International Journal of Thermophysics 23, 1–13 (2002). https://doi.org/10.1023/A:1013965806342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013965806342

Navigation