Advertisement

Scientometrics

, Volume 60, Issue 3, pp 275–277 | Cite as

Loet Leydesdorff: Recipient of the 2003 Derek de Solla Price Award

  • Ronald Rousseau
Article

Keywords

Journal Citation Report Chaos Theory Citation Relation Cosine Measure Title Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ahlgren, B. Jarneving, R. Rousseau (2003), Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient, Journal of the American Society for Information Science and Technology, 54: 550-560.CrossRefGoogle Scholar
  2. H. Etzkowitz, L. Leydesdorff (1997), Universities and the Global Knowledge Economy: A Triple Helix of University-Industry-Government Relations, Cassell, London.Google Scholar
  3. H. Etzkowitz, L. Leydesdorff (2000), The dynamics of innovation: From national systems and “Mode 2” to a Triple Helix of University-Industry-Government relations, Research Policy, 29: 109-123.CrossRefGoogle Scholar
  4. L. Leydesdorff (1986), The development of frames of references, Scientometrics, 9: 103-125.CrossRefGoogle Scholar
  5. L. Leydesdorff (1995), The Challenge of Scientometrics. The Development, Measurement, and Self-organization of Scientific Communications, DSWO Press, Leiden.Google Scholar
  6. L. Leydesdorff, P. Van den Besselaar (Eds) (1994), Evolutionary Economics and Chaos Theory: New directions in technology studies. Pinter, London.Google Scholar
  7. L. Leydesdorff, R. Zaal (1988), Co-words and citation relations between document sets and environments, L. Egghe and R. Rousseau (Eds), Informetrics 87/88, Elsevier, Amsterdam: Elsevier, pp. 105-119.Google Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • Ronald Rousseau
    • 1
  1. 1.KHBO Oostende (Belgium

Personalised recommendations