Photosynthesis Research

, Volume 80, Issue 1–3, pp 109–124 | Cite as

Unraveling the Photosystem I Reaction Center: A History, or the Sum of Many Efforts

  • Petra Fromme
  • Paul Mathis


This article describes some aspects of the history of the discovery of the structure and function of Photosystem I (PS I). PS I is the largest and most complex membrane protein for which detailed structural and functional information is now available. This short historical review cannot cover all the work that has been carried out over more than 50 years, nor provide a deep insight into the structure and function of this protein complex. Instead, this review focuses on more personal views of some of the key discoveries, starting in the 1950s with the discovery of the existence of two photoreactions in oxygenic photosynthesis, and ending with the race towards an atomic structure of PS I.

Hervé Bottin Klaus Brettel crystal structure crystallization electron transfer Petra Fromme Olaf Klukas Norbert Krauß Bernard Lagoutte light harvesting Paul Mathis membrane protein microgravity photosynthesis Photosystem I Bill Rutherford Wolfram Saenger Wolf-Dieter Schubert Pierre Sétif space shuttle Horst T. Witt X-ray crystallography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almog O, Shoham G, Michaeli D and Nechushtai R (1991) Monomeric and trimeric forms of Photosystem I reaction center of Mastigocladus laminosus: crystallization and preliminary characterization. Proc Natl Acad Sci USA 88: 5312–5316PubMedGoogle Scholar
  2. Andersen B (1994) Structure and Function of Photosystem I. Thesis. Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, DenmarkGoogle Scholar
  3. Andersen B and Scheller HV (eds) (1993) Structure, Function and Assembly of Photosystem I. Academic PressGoogle Scholar
  4. Anderson JM and Boardman NK (1966) Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll content and photochemical activities of particles isolated from spinach chloroplasts. Biochim Biophys Acta 112: 403–421Google Scholar
  5. Baszynski T, Brand J, Krogmann DW and Crane FL (1971) Plastocyanin participation in chloroplast Photosystem I. Biochim Biophys Acta 234: 537–540PubMedGoogle Scholar
  6. Beinert H, Kok B and Hoch G (1962) The light induced electron paramagnetic resonance signal of photocatalyst P700. Biochem Biophys Res Comm 7: 209–212PubMedGoogle Scholar
  7. Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788PubMedGoogle Scholar
  8. Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem I reaction center. J Biol Chem 252: 4564–4569PubMedGoogle Scholar
  9. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635PubMedGoogle Scholar
  10. Bibby TS, Nield J, Partensky F and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745PubMedGoogle Scholar
  11. Bittl R, Zech SG, Fromme P, Witt HT and Lubitz W (1997) Pulse EPR structure analysis of Photosystem I single crystals: localization of the phylloquinone acceptor. Biochemistry 36: 12001–12004PubMedGoogle Scholar
  12. Blankenship RE (1992) Origin and early evaluation of photosynthesis. Photosynth Res 33: 91–111PubMedGoogle Scholar
  13. Boardman NK, Thorne SW and Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56: 586–593PubMedGoogle Scholar
  14. Boekema EJ, Dekker JP, van Heel M, Rögner M, Saenger W, Witt I and Witt H (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286Google Scholar
  15. Boekema EJ, Dekker JP, Rögner M, Saenger W, Witt I, Witt H and van Heel M (1989) Refined analysis of the trimeric structure of the isolated photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 974: 81–87Google Scholar
  16. Boekema EJ, Wynn RM and Malkin R (1990) The structure of spinach Photosystem I studied by electron microscopy. Biochim Biophys Acta 1017: 49–56Google Scholar
  17. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748PubMedGoogle Scholar
  18. Bohme H and Kunert KJ (1980) Photoreactions of cytochromes in algal chloroplasts. Eur J Biochem 106: 329–336PubMedCrossRefGoogle Scholar
  19. Bonnerjea J and Evans MCW (1982) Identification of multiple components in the intermediary electron carrier complex of Photosystem I. FEBS Lett 148: 313–316Google Scholar
  20. Böttcher B, Gräber P and Boekema EJ (1992) The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. Biochim Biophys Acta 1100: 125–136PubMedGoogle Scholar
  21. Bottin H and Lagoutte B (1992) Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1101: 48–56PubMedGoogle Scholar
  22. Breton J, Roux E and Whitmarsh J (1975) Dichroism of chlorophyll a I absorption change at 700 nm using chloroplasts oriented in a magnetic field. Biochem Biophys Res Comm 64: 1274–1277Google Scholar
  23. Breton J, Nabedryk E and Leibl W(1999) FTIR study of the primary electron donor of Photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592PubMedGoogle Scholar
  24. Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318: 322–373Google Scholar
  25. Brettel K and Golbeck JH (1995) Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron-sulfur centers FX, FB and FA. Photosyn Res 45: 183–193Google Scholar
  26. Brettel K and Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507: 100–114PubMedGoogle Scholar
  27. Cederstrand CN and Govindjee (1966) Some properties of spinach chloroplast fractions obtained by digitonin solubilization. Biochim Biophys Acta 120: 177–180PubMedGoogle Scholar
  28. Chitnis PR (1996) Photosystem I. Plant Physiol 111: 661–669PubMedGoogle Scholar
  29. Commoner B (1961) Electron spin resonance studies of photosynthetic systems. In: Mc Elroy WD and Glass B (eds) Light and Life, pp 356–377. The John Hopkins Press, Baltimore, MarylandGoogle Scholar
  30. Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718PubMedGoogle Scholar
  31. Deligiannakis Y, Hanley J and Rutherford AW (1997) Spin-lattice relaxation of the phylloquinone radical of Photosystem I. Biochemistry 37: 3329–3336Google Scholar
  32. Diaz-Quintana A, Leibl W, Bottin H and Sétif P (1998) Electron transfer in Photosystem I. Reaction centers follow a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37: 3429–3439PubMedGoogle Scholar
  33. Dietrich WE and Thornber JP (1971) The P700-chlorophyll aprotein of a blue-green alga. Biochim Biophys Acta 245: 482–493PubMedGoogle Scholar
  34. Döring G, Bailey JL, Weikara J and Witt HT (1968) Some new results in photosynthesis, the action of two chlorophyll aI molecules in light reaction I of photosynthesis. Naturwissenschaften 5: 219–224Google Scholar
  35. Duysens LNM (1960) Cytochrome oxidation by a second photochemical system in the red alga Porphyridium cruentum. In: Christensen BC and Buchanan B (eds) Progress in Photobiology. Proceedings of the 3rd International Congress on Photobiology, Copenhagen 1960, pp 135–142. Elsevier, AmsterdamGoogle Scholar
  36. Duysens LNM (1989) The discovery of the two photosynthetic systems: a personal account. Photosynth Res 21: 61–79Google Scholar
  37. Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511PubMedGoogle Scholar
  38. Dzuba SA, Gast P and Hoff AJ (1997) Electron spin echo of spin polarized radical pairs in the intact quinone reconstituted plant Photosystem I reaction center. Chem Phys Lett 236: 595–602Google Scholar
  39. Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of Photosystem I in spinach chloroplasts. FEBS Lett 49: 111–114PubMedGoogle Scholar
  40. Evans MCW, Sihra CK, Bolton JR and Cammack R (1975) Primary electron acceptor complex of Photosystem I in spinach chloroplasts.Nature 256: 668–670Google Scholar
  41. Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the Photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984PubMedGoogle Scholar
  42. Fish L, Kuck U and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421PubMedGoogle Scholar
  43. Ford RC (1987) Investigation of highly stable Photosystem I chlorophyll-protein complexes from the thermophilic cyanobacterium Phormidium laminosum. Biochim Biophys Acta 893: 115–125Google Scholar
  44. Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosytem I reaction centre complexes.EMBO J 7: 2287–2293PubMedGoogle Scholar
  45. Ford R, Paupit R and Holzenburg A (1988) Structural studies on improved crystals of the Photosystem I reaction centre from Phormidium laminosum. FEBS Lett 238: 385–389Google Scholar
  46. Ford RC, Hefti A and Engel A (1990) Ordered arrays of the Photosystem I reaction centre after reconstitution: projections and surface reliefs of the complex at 2 nm resolution. EMBO J 9: 3067–3075PubMedGoogle Scholar
  47. Fotiadis D, Muller DJ, Tsiotis G, Hasler L, Tittmann P, Mini T, Jeno P, Gross H and Engel A (1998) Surface analysis of the Photosystem I complex by electron and atomic force microscopy. J Mol Biol 283: 83–94PubMedGoogle Scholar
  48. Frank K, McLean MB and Sauer K (1979) Triplet states in Photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76: 5124–5128PubMedGoogle Scholar
  49. Fromme P (1998) Crystallization of Photosystem I for structural analysis. Habilitation. Technical University Berlin, BerlinGoogle Scholar
  50. Fromme P (2003) Crystallization of Photosystem I. In: Iwata S (ed) Methods and Results in Crystallization of Membrane Proteins.pp 147–173. International University Line, La Jolla, CaliforniaGoogle Scholar
  51. Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31PubMedGoogle Scholar
  52. Fromme P, Bottin H, Krauß N and Sétif P (2002) Crystallization and electron paramagnetic resonance characterization of the complex of Photosystem I with its natural electron acceptor ferredoxin. Biophys J 83: 1760–1773PubMedGoogle Scholar
  53. Fujita I, Davis MS and Fajer J (1978) Anion radicals of pheophytin and chlorophyll a: their role in the primary charge separations of plant photosynthesis. J Am Chem Soc 100: 6280–6282Google Scholar
  54. Gast P, Swarthoff T, Ebskamp FCR and Hoff AJ (1983) Evidence for a new early acceptor in Photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta 722: 163–175Google Scholar
  55. Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP and Boekema EJ (2002) Supramolecular organization of Photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525: 121–125PubMedGoogle Scholar
  56. Gobets B and van Grondelle R (2001) Energy transfer and trapping in Photosystem I. Biochim Biophys Acta 1507: 80–99PubMedGoogle Scholar
  57. Golbeck JH (1996) Photosystem I. Plant Physiol 111: 661–669Google Scholar
  58. Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177Google Scholar
  59. Golbeck JH and Cornelius JM (1986) Photosystem I charge separation in the absence of centers A and B. I. Optical characterization of center ‘A2’ and evidence for its association with a 64-kDa peptide. Biochim Biophys Acta 849: 16–24Google Scholar
  60. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in Photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedGoogle Scholar
  61. Hastings G and Sivakumar V (2001) A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in Photosystem I: are both phylloquinones involved in electron transfer? Biochemistry 40: 3681–3689PubMedGoogle Scholar
  62. Hatanaka H, Sonoike K, Hirano M and Katoh S (1992) Electron transfer from cytochrome c553 to P700 in cyanobacterial reaction center complexes with and without bound PsaF gene product. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 601–604. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  63. Hatanaka H, Sonoike K, Hirano M and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim Biophys Acta 1141: 45–51PubMedGoogle Scholar
  64. Hayashida N, Matsubayashi T, Shinozaki K, Sugiura M, Inoue K and Hiyama T (1987) The gene for the 9 kD polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the Photosystem I complex, in tobacco chloroplast DNA. Curr Genet 12: 247–250PubMedGoogle Scholar
  65. Heathcote P, Rigby SEJ and Evans MC (1995) Electron nuclear double resonance (ENDOR) studies of the phylloquinone electron acceptor (A1) in the Photosystem I reaction centre. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol II, pp 163–166. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  66. Heathcote P, Moenne-Loccoz P, Rigby SE and Evan MC (1996) Photoaccumulation in Photosystem I does produce a phylloquinone (A1.-) radical. Biochemistry 35: 6644–6650PubMedGoogle Scholar
  67. Hecks B, Wulf K, Breton J, Leibl Wand Trissl H-W (1994) Primary charge separation in Photosystem I: a two-step electrogenic charge separation connected with P700+A0 - and P700+A1 - formation. Biochemistry 33: 8619–8625PubMedGoogle Scholar
  68. Hefti A, Ford RC, Miller M, Cox RP and Engel A (1992) Analysis of the structure of Photosystem I in cyanobacterial thylakoid membranes. FEBS Lett 296: 29–32PubMedGoogle Scholar
  69. Herrmann RG, Oelmueller R, Bichker J, Schneidbauer A, Stepphuhn J, Wedel N, Tyagi AK and Westhoff P (1991) The thylakoid membrane of higher plants: genes, their expression and interaction. In: Herrmann RG and Larkins BA (eds) Plant Molecular Biology, 2. Plenum, New YorkGoogle Scholar
  70. Hill R and Bendall F (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–137Google Scholar
  71. Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schroer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of Photosystem I. EMBO J 15: 6374–6384PubMedGoogle Scholar
  72. Hiyama T and Ke B (1971) A new photosynthetic pigment, 'P430': its possible role as the primary electron acceptor of Photosystem I. Proc Natl Acad Sci USA 68: 1010–1013PubMedGoogle Scholar
  73. Høj PB, Svendsen I, Scheller HV and Møller BL (1987) Identification of a chloroplast-encoded 9-kDa polypeptide as a 2[4Fe- 4S] protein carrying centers A and B of Photosystem I. J Biol Chem 262: 12676–12684PubMedGoogle Scholar
  74. Ikeuchi M, Nyhus KJ, Inoue Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the Photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 287: 5–9PubMedGoogle Scholar
  75. Itoh S, Iwaki M and Ikegami I (1987) Extraction of vitamin K-1from Photosystem I particles by treatment with diethyl ether and its effects on the A-1 EPR signal and System I photochemistry.Biochim Biophys Acta 893: 508–516Google Scholar
  76. Iwaki M, Takahashi M, Shimada K, Takahashi Y and Itoh S (1992) Photoaffinity labeling of the phylloquinone-binding polypeptides by 2-azidoanthraquinone in Photosystem I particles. FEBS Lett 312: 27–30PubMedGoogle Scholar
  77. Jansson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant Photosystem I holocomplex. Plant Physiol 112: 409–420PubMedGoogle Scholar
  78. Jekow P, Fromme P, Witt H and Saenger W (1995) Photosystem I from Synechococcus elongatus: preparation and crystallization of monomers with varying subunit compositions. Biochim Biophys Acta 1229: 115–120Google Scholar
  79. Jekow P, Fromme P, Witt H and Saenger W (1996) Crystallisation of intact and subunit L-deficient monomers from Synechocystis PCC 6803 Photosystem I. Z Naturforsch 51c: 195–199Google Scholar
  80. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5A resolution. Nature 411: 909–917PubMedGoogle Scholar
  81. Kargul J, Nield J and Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I-Photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii. Insights into light harvesting for PSI. J Biol Chem 278: 16135–16141PubMedGoogle Scholar
  82. Kathoh S (2003) Early research on the role of plastocyanin in photosynthesis. Photosynth Res 76: 255–261Google Scholar
  83. Katoh S and San Pietro A (1966) Activities of chloroplast fragments. I. Hill reaction and ascorbate-indophenol photoreductions.J Biol Chem 241: 3575–3581PubMedGoogle Scholar
  84. Ke B, Hansen RE and Beinert H (1973) Oxidation-reduction potentials of bound iron-sulfur proteins of Photosystem I. Proc Natl Acad Sci USA 70: 2941–2945PubMedGoogle Scholar
  85. Kitmitto A, Holzenburg A and Ford RC (1997) Two-dimensional crystals of Photosystem I in higher plant grana margins. J Biol Chem 272: 19497–19501PubMedGoogle Scholar
  86. Kitmitto A, Mustafa AO, Holzenburg A and Ford RC (1998) Threedimensional structure of higher plant Photosystem I determined by electron crystallography. J Biol Chem 273: 29592–29599PubMedGoogle Scholar
  87. Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W(1999a) Localization of two phylloquinones, QK and QK, in an improved electron density map of Photosystem I at 4Å resolution. J Biol Chem 274: 7361–7367PubMedGoogle Scholar
  88. Klukas O, Schubert WD, Jordan P, Krauß N, Fromme P, Witt HT and Saenger W (1999b) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360PubMedGoogle Scholar
  89. Knoetzel J, Mant A, Haldrup A, Jensen PE and Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic Photosystem I. FEBS Lett 510: 145–148PubMedGoogle Scholar
  90. Koike K, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of Photosystem I components from the cyanobacterium Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 253: 257–263PubMedGoogle Scholar
  91. Kok B (1956) On the reversible absorption changes at 705 nm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401PubMedGoogle Scholar
  92. Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of System I of photosynthesis at 6Å resolution. Nature 361: 326–361Google Scholar
  93. Krau#x00DF; N, Schubert WD, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3: 965–973Google Scholar
  94. Kruip J, Boekema EJ, Bald D, Boonstra AF and Rögner M (1993) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 23353–23360PubMedGoogle Scholar
  95. MacMillan F, Hanley J, van der Weerd L, Knupling M, Un S and Rutherford AW (1997) Orientation of the phylloquinone electron acceptor anion radical in Photosystem I. Biochemistry 36: 9297–9303PubMedGoogle Scholar
  96. Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19PubMedGoogle Scholar
  97. Mathis P, Sauer K and Rémy R (1978) Rapidly reversible flashinduced electron transfer in a P-700 chlorophyll-protein complex isolated with SDS. FEBS Lett 88: 275–278Google Scholar
  98. Mühlenhoff U, Haehnel W, Witt HT and Herrmann RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78PubMedGoogle Scholar
  99. Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll proteins of Photosystem I. Plant Physiol 65: 814–822PubMedCrossRefGoogle Scholar
  100. Nechushtai R, Muster P, Binder A, Liveanu V and Nelson N (1983) Photosystem I reaction center from the thermophilic cyanobacterium Mastigocladus laminosus. Proc Natl Acad Sci USA 80: 1179–1183PubMedGoogle Scholar
  101. Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206PubMedGoogle Scholar
  102. Newman PJ and Sherman LA (1978) Isolation and characterization of Photosystem I and II membrane particles from the blue-green alga, Synechococcus cedorum. Biochim Biophys Acta 503: 343–361PubMedGoogle Scholar
  103. Nitschke W and Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem Sci 16: 241–245PubMedGoogle Scholar
  104. Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of Signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628PubMedGoogle Scholar
  105. Norris JR, Scheer H, Druyan ME and Katz JJ (1974) An electronnuclear double resonance (Endor) study of the special pair model for the photoreactive chlorophyll in photosynthesis. Proc Natl Acad Sci USA 71: 4897–4900PubMedGoogle Scholar
  106. Nuijs AM, Shuvalov VA, van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Biochim Biophys Acta 850: 310–318Google Scholar
  107. Ogawa T, Obata F and Shibata K (1966) Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta 112: 223–234PubMedGoogle Scholar
  108. Ogawa T, Vernon LP and Mollenhauer HH (1969) Properties and structure of fractions prepared from Anabaena variabilis by the action of Triton X-100. Biochim Biophys Acta 172: 216–223PubMedGoogle Scholar
  109. Oh-oka H, Takahashi Y, Kuriyama K, Saeki K and Matsubara H (1988) The protein responsible for center A/B in spinach Photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. J Biochem (Tokyo) 103: 962–968Google Scholar
  110. Philipson KD, Sato VL and Sauer K (1972) Exciton interaction in the Photosystem I reaction center from spinach chloroplasts. Absorption and circular dichroism difference spectra. Biochemistry 11: 4591–4595PubMedGoogle Scholar
  111. Rabinowitch EI (1956) Photosynthesis and related processes, Vol II, Part 2. Interscience Publishers, LondonGoogle Scholar
  112. Reed D and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Comm 30: 471–475PubMedGoogle Scholar
  113. Rigby SE, Muhiuddin IP, Evans MC, Purton S and Heathcote P (2002) Photoaccumulation of the PsaB phyllosemiquinone inPhotosystem I of Chlamydomonas reinhardtii. Biochim Biophys Acta 1556: 13–20PubMedGoogle Scholar
  114. Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di-, and trimeric PS I reaction center complexes isolated from the thermophilic cyano-bacterium Synechoccus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424Google Scholar
  115. Rutherford AW and Mullet JE (1981) Reaction center triplet states in Photosystem I and Photosystem II. Biochim Biophys Acta 635: 225–235PubMedGoogle Scholar
  116. Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron donor of Photosystem I. Biochim Biophys Acta 1019: 128–132Google Scholar
  117. Sauer K, Mathis P, Acker S and van Best JA (1978) Electron acceptors associated with P-700 in Triton solubilized Photosystem I particles from spinach chloroplasts. Biochim Biophys Acta 503: 120–134PubMedGoogle Scholar
  118. Schoeder HU and Lockau W (1986) Phylloquinone copurifies with the large subunit of Photosystem I. FEBS Lett 199: 23–27Google Scholar
  119. Schubert WD, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769PubMedGoogle Scholar
  120. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314PubMedGoogle Scholar
  121. Sétif P and Brettel K (1990) Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1 -). Biochim Biophys Acta 1020: 232–238Google Scholar
  122. Sétif P, Hervo G and Mathis P (1981) Flash-induced absorption changes in Photosystem I. Radical pair or triplet state formation? Biochim Biophys Acta 638: 257–267Google Scholar
  123. Setif P, Fischer N, Lagoutte B, Bottin H and Rochaix JD (2002) The ferredoxin docking site of Photosystem I. Biochim Biophys Acta 1555: 204–209PubMedGoogle Scholar
  124. Shin M and Arnon DI (1965) Enzymic mechanisms of pyridine nucleotide reduction in chloroplasts. J Biol Chem 240: 1405–1411PubMedGoogle Scholar
  125. Shoham G, Michaeli D and Nechustai R (1990) The Photosystem I reaction center of Mastigolatus laminosus-structural and functional aspects. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 755–762. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  126. Shuvalov VA (1976) The study of the primary photoprocesses in Photosystem I of chloroplasts. Recombination luminescence, chlorophyll triplet state and triplet-triplet annihilation. Biochim Biophys Acta 430: 113–121PubMedGoogle Scholar
  127. Takahashi Y and Katoh S (1982) Functional subunit structure of Photosystem I reaction center in Synechococcus sp. Arch Biochem Biophys 219: 219–227PubMedGoogle Scholar
  128. Thornber JP, Alberte RS, Hunter FA, Shiozawa JA and Kan KS (1976) The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp Biol 28: 132–148PubMedGoogle Scholar
  129. Tsiotis G, Nitschke W, Haase W and Michel H (1993) Purification and crystallisation of Photosystem I complex from a phycobilisome-less mutant of the cyanobacterial Synechococcus PCC 7002. Photosynth Res 35: 285–297Google Scholar
  130. van der Staay GWM, Boekema EJ, Dekker JP and Matthijs HCP (1993) Characterization of trimeric Photosystem I particles from prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis. Biochim Biophys Acta 1142: 189–193Google Scholar
  131. Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41: 285–294PubMedGoogle Scholar
  132. Vernon LP, Shaw ER and Ke B (1966) A photochemically active particle derived from chloroplasts by the action of the detergent Triton X-100. J Biol Chem 241: 4101–4109PubMedGoogle Scholar
  133. Vrieze J, Gast P and Hoff AJ (1996) Structure of the reaction center of Photosystem I of plants. An investigation with lineardichroic absorbance-detected magnetic resonance. J Phys Chem 100: 9960–9967Google Scholar
  134. Watanabe T, Kobayashi M, Hongu A, Nakazato M and Hiyama T (1985) Evidence, that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus.FEBS Lett 235: 252–256Google Scholar
  135. Wessels JSC (1966) Isolation of a chloroplast fragment fraction with NADP+-photoreducing activity dependent on plastocyanin and independent of cytochrome f. Biochim Biophys Acta 126: 581–583PubMedGoogle Scholar
  136. Williams JC, Glazer AN and Lundell DJ (1983) Cyanobacterial Photosystem I: morphology and aggregation behavior. Proc Natl Acad Sci USA 80: 5923–5926PubMedGoogle Scholar
  137. Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107 (this issue)Google Scholar
  138. Witt H, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger W (1992) Three-dimensional crystals of Photosystem I from Synechococcus sp. and X-ray structure analysis at 6Å resolution. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 521–528. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  139. Witt HT, Müller A and Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195PubMedGoogle Scholar
  140. Witt I, Witt H, Gerken S, Saenger W, Dekker J and Rögner M(1987) Crystallization of reaction center I of photosynthesis. FEBS Lett 221: 260–264Google Scholar
  141. Witt I, Witt H, DiFiore D, Rögner M, Hinrichs W, Saenger W, Granzin J, Betzel C and Dauter Z (1988) X-ray characterization of single crystals of the reaction center I of water splitting photosynthesis. Ber Bunsenges Phys Chem 92: 1503–1506Google Scholar
  142. Wynn RM, Omaha J and Malkin R (1989) Structural and functional properties of the cyanobacterial Photosystem I complex.Biochemistry 28: 5554–5560PubMedGoogle Scholar
  143. Xu W, Chitnis PR, Valieva A, Van Der Est A, Pushkar J, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G and Golbeck JH (2003a) Electron transfer in cyanobacterial Photosystem I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27864–27875PubMedGoogle Scholar
  144. Xu W, Chitnis PR, Valieva A, Van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial Photosystem I: II. Determination of the forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27876–27887PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Petra Fromme
    • 1
  • Paul Mathis
    • 2
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA
  2. 2.Département de Biologie Cellulaire et Moléculaire CEA SaclaySection de BioénergétiqueGif-sur-Yvette, CedexFrance

Personalised recommendations