Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 3, pp 643–658 | Cite as

Identification of the Sex Pheromone of the Currant Shoot Borer Lampronia capitella

  • Christer Löfstedt
  • Junwei Zhu
  • Mikhail V. Kozlov
  • Vincas Buda
  • Erling V. Jirle
  • Sven Hellqvist
  • Jan Löfqvist
  • Ernst Plass
  • Stephan Franke
  • Wittko Francke
Article

Abstract

Under an artificial light:dark cycle, females of Lampronia capitella were observed calling, with extended terminal abdominal segments, during the first 2 hr of the photoperiod. Extracts of terminal abdominal segments from females elicited large electroantennographic responses from male antennae. Gas chromatography with electroantennographicDetection revealed three active peaks. Based on comparison of retention times and mass spectra of synthetic standards, these compounds were identified as (Z,Z)-9,11-tetradecadienol and the corresponding acetate and aldehyde. The electroantennographic activity of the four geometric isomers of all three compounds was investigated, and the respective (Z,Z)-isomer was found to be the most active in all cases. Aldehydes generally elicited larger antennal responses than alcohols, whereas acetates were the least active compounds. A subtractive trapping assay in the field, based on a 13:26:100 μg mixture of (Z,Z)-9,11-tetradecadienal, (Z,Z)-9,11-tetradecadienyl acetate, and (Z,Z)-9,11-tetradecadienol confirmed that all three compounds are pheromone components. Subtraction of (Z,Z)-9,11-tetradec- adienol from the blend completely eliminated its attractiveness, whereas the other two-component blends showed reduced activity. This is the first pheromone identification from the monotrysian superfamily Incurvarioidea, confirming that the common pheromones among ditrysian moths (long-chain fatty acidDerivatives comprising alcohols, acetates, and aldehydes with one or more double bonds) is not an autapomorphy of Ditrysia, but a synapomorphy of the more advanced heteroneuran lineages.

Lampronia capitella Prodoxidae Incurvarioidea Lepidoptera currant shoot borer sex pheromone EAG GC-EAD, Z,Z-9,11-tetradecadienal Z,Z-9,11-tetradecadienyl acetate Z,Z-9,11-tetradecadienol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, T., Ogura, Y., and Uchiyama, M. 1988. Mass spectra of lepidopterous sex pheromones with a conjugated diene system. Agric. Biol. Chem. 52:1415–1423.Google Scholar
  2. Arn, H. and Louis, F. 1997. Mating disruption in European vineyards, pp. 377–382, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.Google Scholar
  3. Arn, H., Tóth, M., and Priesner, E. 1992. List of Sex Pheromones of Lepidoptera and Related Attractants, 2nd edn. OILB SROP, Paris.Google Scholar
  4. Bestmann, H. J., Stransky, W., and Vostrowsky, O. 1976. Darstellung lithiumfreier Ylidlösungen mit Natrium-bis(trimethylsilyl)amid als Base. Chem. Ber. 109:1694–1700.Google Scholar
  5. Bestmann, H. J., Suess, J., and Vostrowsky, O. 1981. Pheromones XXXIV. Synthesis of conjugated unsaturated lepidopteran pheromones and analogs. Liebigs Ann. Chem. 2117–2138.Google Scholar
  6. Björkling, F., Norin, T., Unelius, C. R., and Miller, R. B. 1987. A stereospecific synthesis of all four isomers of 9,11-tetradecadienyl acetate using a general method applicable to 1,3-dienes. J. Org. Chem. 52:292–294.Google Scholar
  7. Börner, C. 1925. Lepidoptera, Schmetterlinge, pp. 358–387, in P. Brohmer, (ed.). Fauna von Deutschland. Ein Bestimmungsbuch unserer heimischen Tierwelt. Quelle and Meyer, Leipzig.Google Scholar
  8. Börner, C. 1939. Die Grundlagen meines Lepidopterensystems. Verhandlungen VII Internationalen Kongress für Entomologie 2:1372–1424.Google Scholar
  9. Burger, B. V., Le Roux, M., Mackenroth, W. M., Spies, H. S. C., and Hofmeyr, J. H. 1990. 7-Vinyldecyl acetate, novel inhibitor of pheromonal attraction in the false codling moth, Cryptophlebia leucotreta. Tetrahed. Lett. 31:5771–5772.Google Scholar
  10. Cuvigny, T., du Penhoat, C. H., and Julia, M. 1987. Synthesis with sulfones XLVII: Stereoselective access to 1,3-and 1,4-dienes through hydrogenolysis of benzenesulfonyldienes. Application to pheromone synthesis. Tetrahedron 43:859–872.Google Scholar
  11. Dunkelblum, E., Kehat, M., Gothilf, S., Greenberg, S., and Sklarsz, B. 1982. Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica 10:21–26.Google Scholar
  12. Gut, L. J. and Brunner, J. F. 1999. Pheromone-based management of codling moth (Lepidoptera: Tortricidae) in Washington apple orchards. J. Agric. Entomol. 15:387–406.Google Scholar
  13. Heath, J. and Pelham-Clinton, E. C. 1976. Incurvariidae, pp. 277–300, in J. Heath (ed.). The Moths and Butterflies of Great Britain and Ireland, Vol. 1. Blackwell Science, Oxford.Google Scholar
  14. Kozlov, M. V., Zhu, J., Philipp, P., Francke, W., Zvereva, E. L., Hansson, B. S., and Löfstedt, C. 1996. Pheromone specificity in Eriocrania semipurpurella(Stephens) and E. sangii(Wood) (Lepidoptera: Eriocraniidae) based on chirality of semiochemicals. J. Chem. Ecol. 22:431–454.Google Scholar
  15. Kristensen, N. P. 1984. Studies on the morphology and systematics of primitive Lepidoptera (Insecta). Steenstrupia 10:141–191.Google Scholar
  16. Kristensen, N. P. and Skalski, A. 1999. Phylogeny and palaeontology (pp. 7–25), in N. P. Kristensen (ed.). Lepidoptera: Moths and Butterflies 1. Handbook of Zoology, Vol. IV, Part 35 De Gruyter, New York.Google Scholar
  17. Löfstedt, C. and Kozlov, M. 1997. A phylogenetic analysis of pheromone communication in primitive moths, pp. 473–489, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.Google Scholar
  18. Löfstedt, C. and Odham, G. 1984. Analysis of moth pheromone acetates by selected ion monitoring using electron impact and chemical ionization mass spectrometry. Biomed. Mass Spectrom. 11:106–113.Google Scholar
  19. Mancuso, A. J. and Swern, D. 1981. Activated dimethyl sulfoxide: Useful reagent for synthesis. Synthesis 165–185.Google Scholar
  20. Ochiai, M., Ukita, T., and Fujita, E. 1983. Stereoselective syntheses of E-and Z-9,11-dodecadien-1-yl acetates: The major sex pheromones of the red bollworm moth. Chem. Pharm. Bull. 31:1641–1645.Google Scholar
  21. Percy-Cunningham, J. E. and MacDonald, J. A. 1987. Biology and ultrastructure of sex pheromone-producing glands, pp. 27–76, in G. D. Prestwich and G. J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, New York.Google Scholar
  22. Ramiandrasoa, F. and Tellier, T. 1990. Stereoselective synthesis of a potential pheromone of Stenoma cecropia (Lepidoptera). Synth. Comm. 20:333–344.Google Scholar
  23. Reed, D. W. and Chisholm, M. D. 1985. Attraction of moth species of Tortricidae, Gelechiidae, Geometridae, Drepanidae, Pyralidae, and Gracillariidae families to field traps baited with conjugated dienes. J. Chem. Ecol. 11:1645–1657.Google Scholar
  24. Rossi, R. and Carpita, A. 1977. Insect pheromones: Stereoselective reduction of β-or ω-alkynols to the corresponding (E)-alkenols by lithium tetrahydroaluminate. Synthesis 561–562.Google Scholar
  25. Rossi, R., Carpita, A., and Quirici, M. G. 1981. Dienic sex pheromones. Stereoselective synthesis of (7S,9Z)-7,9-dodecadien-1-yl acetate, (E)-9,11-dodecadien-1-yl acetate, and of (9S,11E)-9,11-tetradecadien-1-yl acetate by palladium-catalyzed reactions. Tetrahedron 37:2617–2623.Google Scholar
  26. Samain, D. and Descoins, C. 1978. A short, stereoselective synthesis of 8S,10S-dodecadien-1-ol: The sex pheromone of the codling moth, Laspeyresia pomonella L. Synthesis 388–389.Google Scholar
  27. Tóth, M., Szöcs, G., van Nieukerken, E. J., Philipp, P., Schmidt, F., and Francke, W. 1995. Novel type of sex pheromone structure identified from Stigmella malella (Stainton) (Lepidoptera: Nepticulidae). J. Chem. Ecol. 21:13–27.Google Scholar
  28. Wong, J. W., Palaniswamy, P., Underhill, E. W., Steck, W. F., and Chisholm, M. D. 1984. Sex pheromone components of fall cankerworm moth, Alsophila pometaria. Synthesis and field trapping. J. Chem. Ecol. 10:1579–1596.Google Scholar
  29. Zhu, J., Kozlov, M. V., Philipp, P., Francke, W., and Löfstedt, C. 1995. Identification of a novel moth sex pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and its phylogenetic implications. J. Chem. Ecol. 21:29–43.Google Scholar
  30. Zhu, J., Ryrholm, N., Ljungberg, H., Hansson, B. S., Hall, D., Reed, D., and Löfstedt, C. 1996. Olefinic acetates, δ-9,11-14:OAc and δ-7,9-12:OAc used as sex pheromone components in three Geometrid Moths, Idaea aversata, I. straminata, and I. biselata (Geometridae: Lepidoptera). J. Chem. Ecol. 22:1505–1526.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Christer Löfstedt
    • 1
  • Junwei Zhu
    • 1
  • Mikhail V. Kozlov
    • 2
  • Vincas Buda
    • 1
  • Erling V. Jirle
    • 1
  • Sven Hellqvist
    • 3
  • Jan Löfqvist
    • 4
  • Ernst Plass
    • 5
  • Stephan Franke
    • 5
  • Wittko Francke
    • 5
  1. 1.Department of EcologyLund UniversityLundSweden
  2. 2.Section of Ecology, Biological FacultyUniversity of TurkuTurkuFinland
  3. 3.Department of Agricultural Research for Northern SwedenSwedish University of Agricultural SciencesUmeåSweden
  4. 4.Department of Plant SciencesSwedish University of Agricultural SciencesAlnarpSweden
  5. 5.Institute of Organic Chemistry, University of HamburgHamburgGermany

Personalised recommendations