Hydrobiologia

, Volume 514, Issue 1–3, pp 79–85 | Cite as

Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea

  • Helen Orav-Kotta
  • Jonne Kotta
Article

Abstract

The isopod Idotea baltica is the most important benthic herbivore in the Baltic Sea. There exists a significant correlation between the distribution of the adult isopod and the belts of bladder wrack Fucus vesiculosus. However, following the eutrophication induced blooms of the filamentous macroalga Pilayella littoralis and the disappearance of F. vesiculosus a notable increase in idoteid abundances has been observed. The aim of this paper was (1) to evaluate experimentally whether F. vesiculosus provides either food, shelter or both to the isopods and (2) to estimate the role of associated filamentous algae in the habitat selection process. Amongst six abundant macroalgal species, about 50% of isopod population was attracted to F. vesiculosuscovered with the filamentous algae P. littoralis. The majority of the remaining part of the population was either swimming freely or attracted to non-epiphytic P. littoralis. When both live algae and artificial substrata were provided, P. littoralis growing on artificial substrata was clearly preferred by the isopods over epiphyte-free F. vesiculosus. In the grazing experiment where I. baltica was allowed to choose between F. vesiculosus and P. littoralis the latter contributed practically 100% of the diet of the isopod. The results indicate the importance of P. littoralis as a food item and F. vesiculosus as a shelter for I. baltica.

Baltic Sea habitat choice food choice experiment Fucus vesiculosus Idotea baltica Pilayella littoralis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrontes, J., 1990. Diet, food preference and digestive efficiency in intertidal isopods inhabiting macroalgae. J. Exp. Mar. Biol. Ecol. 139: 231–249.Google Scholar
  2. Birch, P. B., J. O. Gabrielson & K. S. Hamel, 1983. Decomposition of Cladophora I. Field studies in the Peel-Harvey estuarine system, western Australia. Bot. Mar. 26: 165–171.Google Scholar
  3. Bonsdorff, E., E. M. Blomqvist, J. Mattila & A. Norkko, 1997. Coastal eutrophication: cause, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar. Coast. Shelf Sci. 44: 63–72.Google Scholar
  4. Boström, C. & E. Bonsdorff, 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J. Sea Res. 37: 153–166.Google Scholar
  5. Boström, C. & J. Mattila, 1999. The relative importance of food and shelter for seagrass-associated invertebrates: a latitudinal comparison of habitat choice by isopod grazers. Oecologia 120: 162–170.Google Scholar
  6. Brawley, S. H. & W. H. Adey, 1981. The effect of micrograzers on algal community structure in a coral reef microcosm. Mar. Biol. 61: 167–177.Google Scholar
  7. Brawley, S. H. & X. G. Fei, 1987. Studies of mesoherbivory in aquaria and in unbarricaded mariculture farm on the Chinese coast. J. Phycol. 23: 614–623.Google Scholar
  8. Bäck, S., A. Lehvo & J. Blomster, 2000. Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast. Ann. Bot. Fennici 37: 155–161.Google Scholar
  9. Carlson, L., 1991. Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, southern Sweden. Bot. Mar. 34: 447–453.Google Scholar
  10. D'Antonio, C., 1985. Epiphytes on the rocky intertidal red alga Rhodomela larix (Turner) C. Agardh: negative effects on the host and food for herbivores? J. Exp. Mar. Biol. Ecol. 86: 197–218.Google Scholar
  11. Duffy, J. E., 1990. Amphipods on seaweeds: partners or pests? Oecologia 83: 267–276.Google Scholar
  12. Franke, H.-D. & M. Janke, 1998. Mechanisms and consequences of intra-and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): A laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Biol. Ecol. 227: 1–21.Google Scholar
  13. Gabrielson, J. O., P. B. Birch & K. S. Hamel, 1983. Decomposition of Cladophora II. In vitro studies of nitrogen and phosphorus regeneration. Bot. Mar. 26: 173–179.Google Scholar
  14. Haahtela, I., 1981. Probable reasons for the decline of the bladder wrack Fucus vesiculosus L. in SW Finland. Rep. Dept. Biol., University Turku 2: 18-21.Google Scholar
  15. Haahtela, I., 1984. A hypothesis of the decline of the Bladder Wrack (Fucus vesiculosus L.) in SW Finland in 1975-1981. Limnologica 15: 345–350.Google Scholar
  16. Hacker, S. D. & L. P. Madin, 1991. Why habitat architecture and colour are important to shrimps living in pelagic Sargassum: Use of camouflage and plant-part mimicry. Mar. Ecol. Prog. Ser. 70: 143–15.Google Scholar
  17. Jansson A.-M., 1974. Community structure, modelling and simulation of the Cladophora ecosystem in the Baltic area. Contr. Askö Lab., University Stockholm 5: 1–130.Google Scholar
  18. Jernakoff, P., A. Brearley & J. Nielsen, 1996. Factors affecting grazer epiphyte interactions in temperate seagrass meadows. Oceanogr. Mar. Biol. Ann. Rev. 34: 109–162.Google Scholar
  19. Jernakoff, P. & J. Nielsen, 1996. The relative importance of amphipod and gastropod grazing in Posidonia sinuosa meadows. Aquat. Bot. 56: 183–202.Google Scholar
  20. Jormalainen, V., T. Honkanen & N. Heikkilä, 2001. Feeding preferences and performance of amarine isopod on seaweed hosts: cost of habitat specialization. Mar. Ecol. Prog. Ser. 220: 219–230.Google Scholar
  21. Kangas, P., H. Autio, G. Hällfors, H. Luther, Å. Niemi & H. Salemaa, 1982. A general model of the decline of Fucus vesiculosus at Tvärminne, south coast of Finland in 1977-1981. Acta Bot. Fenn. 118: 1–27.Google Scholar
  22. Kotta, J., T. Paalme, G. Martin & A. Mäkinen, 2000. Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica. Int. Rev. Hydrobiol. 85: 697–705.Google Scholar
  23. Lehvo, A. & S. Bäck, 2001. Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 11: 11–18.Google Scholar
  24. Main, K. L., 1987. Predator avoidance in seagrass meadows: prey behaviour, microhabitat selection, and cryptic coloration. Ecology 68: 170–180.Google Scholar
  25. Mann, K. H., 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930.Google Scholar
  26. Merilaita, S. & V. Jormalainen, 2000. Different roles of feeding and protection in diel microhabitat choice of sexes in Idotea baltica. Oecologia 122: 445–451.Google Scholar
  27. Naylor, E., 1955. The ecological distribution of British species of Idotea (Isopoda). J. Anim. Ecol. 24: 255–269.Google Scholar
  28. Neckles, H. A., R. L. Wetzel & R. J. Orth, 1993. Relative growth of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina) dynamics. Oecologia 93: 285–295.Google Scholar
  29. Nicotri, M. E., 1980. Factors involved in herbivore food preference. J. Exp. Mar. Biol. Ecol. 42: 13–26.Google Scholar
  30. Norkko, J., E. Bonsdorff & A. Norkko, 2000. Drifting algal mats as an alternative habitat for benthic invertebrates: Species specific responses to a transient resource. J. Exp. Mar. Biol. Ecol. 248: 79–104.PubMedGoogle Scholar
  31. Paalme, T., H. Kukk, J. Kotta & H. Orav, 2002. In vitro and in situ decomposition of nuisance macroalgae Cladophora glomerata and Pilayella littoralis. Hydrobiologia, 475/476: 469–476.Google Scholar
  32. Pavia, H., H. Carr & P. Åberg, 1999. Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodulosum (L.) Le Jol. and its epiphytic macroalgae. J. Exp. Mar. Biol. Ecol. 236: 15–32.Google Scholar
  33. Puttman, R. J., 1986. Grazing in Temperate Ecosystems: Large Herbivores and the Ecology of the New Forest. Croom Helm, London.Google Scholar
  34. Ravanko, O., 1969. Benthic algae as food for some invertebrates in the inner part of the Baltic. Limnologica 7: 203–205.Google Scholar
  35. Robertson, A. I. & J. S. Lucas, 1983. Food choice, feeding rates, and the turnover of macrophyte biomass by a surf-zone inhabiting amphipod. J. Exp. Mar. Biol. Ecol. 72: 99–124.Google Scholar
  36. Robertson, A. I. & K. H. Mann, 1980. The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada. Mar. Biol. 59: 63–69.Google Scholar
  37. Salemaa, H., 1978. Geographical variability in the colour polymorphism of Idotea baltica (Isopoda) in the northern Baltic. Hereditas 88: 165–182.PubMedGoogle Scholar
  38. Salemaa, H., 1979. Ecology of the Idotea spp. (Isopoda) in the Northern Baltic. Ophelia 18: 133–150.Google Scholar
  39. Salemaa, H., 1987. Herbivory and microhabitat preferences of Idotea spp. (Isopoda) in the northern Baltic Sea. Ophelia 27: 1–15.Google Scholar
  40. Schaffelke, B., D. Evers & A. Walhorn, 1995. Selective grazing of the isopod Idothea baltica between F. evanescens and F. vesiculosus from Kiel Fjord (Western Baltic). Mar. Biol. 124: 215–218.Google Scholar
  41. Schramm, W., H. K. Lotze & D. Schories, 1996. Eutrophication of macroalgal blooms in inshore waters of the German Baltic coast: The Schlei Fjord, a case study. EUMAS synthesis report, NIOO, Yerseke, The Netherlands.Google Scholar
  42. Shacklock, P. F. & R. W. Doyle, 1983. Control of epiphytes in seaweed cultures using grazers. Aquaculture 31: 141–151.Google Scholar
  43. Sokal, R. R. & F. J. Rohlf, 1981. Biometry: the Principles and Practice of Statistics in Biological Research. W.H. Freeman & Company, San Francisco.Google Scholar
  44. Stoner, A. W., 1980. Perception and choice of substratum by epifaunal amphipods associated with seagrasses. Mar. Ecol. Prog. Ser. 3: 105–111.Google Scholar
  45. Sywula, T., 1964. A study on the taxonomy, ecology and geographical distribution of species of genus Idotea Fabricius (Isopoda, Crustacea) in Polish Baltic. 1 and 2. Bull. Soc. Amis. Sci. Lettr. Poznana. Ser. D 4: 141–200.Google Scholar
  46. Tuomi, J., H. Ilvessalo, P. Niemelä, S. Sirén & V. Jormalainen, 1989. Within-plant variation in phenolic content and toughness of the brown alga Fucus vesiculosus L. Bot. Mar. 32: 505–509.Google Scholar
  47. Vahteri, P., A. Mäkinen, S. Salovius, & I. Vuorinen, 2000. Are drifting algal mats conquering the bottom of the archipelago sea, SW Finland? Ambio 29: 338–343.Google Scholar
  48. Williams, S. L. & H. M. Ruckelshaus, 1993. Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology 74: 904–918.Google Scholar
  49. Williams, G. A. & R. Seed, 1992. Interactions between macrofaunal epiphytes and their host algae. In John, D. M. & S. J. Hawkins (eds), Plant-Animal Interactions in theMarine Benthos. Systematics Association Special 46: 189–211.Google Scholar
  50. Worm, B. & U. Sommer, 2000. Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Mar. Ecol. Prog. Ser. 202: 283–288.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Helen Orav-Kotta
    • 1
  • Jonne Kotta
    • 1
  1. 1.Estonian Marine InstituteUniversity of TartuTallinnEstonia

Personalised recommendations