Biotechnology Letters

, Volume 26, Issue 11, pp 885–890 | Cite as

Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae

  • Ying Wang
  • Wen-Long Shi
  • Xiang-Yong Liu
  • Yu Shen
  • Xiao-Ming Bao
  • Feng-Wu Bai
  • Yin-Bo Qu
Article

Abstract

To produce an industrial strain of Saccharomyces cerevisiae that metabolizes xylose, we constructed a rDNA integration vector and YIp integration vector, containing the xylose-utilizing genes, XYL1 and XYL2, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis, and XKS1, which encodes xylulokinase (XK) from S. cerevisiae, with the G418 resistance gene KanMX as a dominant selectable marker. The rDNA results in integration of multiple copies of the target genes. The industrial stain of S. cerevisiae NAN-27 was transformed with the two integration vectors to produce two recombinant strains, S. cerevisiae NAN-127 and NAN-123. Upon transformation, multiple copies of the xylose-utilizing genes were integrated into the genome rDNA locus of S. cerevisiae. Strain NAN-127 consumed twice as much xylose and produced 39% more ethanol than the parent strain, while NAN-123 consumed 10% more xylose and produced 10% more ethanol than the parent strain over 94 h.

ethanol industrial strain integrating plasmid Saccharomyces cerevisiae xylose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blomqvist K, Suihko ML, Knowles J, Penttilä M (1991) Chromosomal integration and expression of two bacterial α-acetolactate decarboxylase genes in brewer's yeast. Appl. Environ. Microbiol. 57: 2796–2803.Google Scholar
  2. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2 and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 3381–3386.Google Scholar
  3. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure. Yeast 11: 355–360.Google Scholar
  4. Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ (1989) High-copynumber integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79: 199–206.Google Scholar
  5. Mao H, Qu YB, Gao PJ, Li W (1996) Improvement of xylose fermentation by intergeneric protoplast fusion of Pichia stipitis and Saccharomyces cerevisiae. Chin. J. Biotechnol. 12: 157–162.Google Scholar
  6. Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol. 68: 79–87.Google Scholar
  7. Mellor J, Dobson MJ, Roberts NA, Tuite MF, Emtage JS, White S, Lowe PA, Patel T, Kingsman AJ, Kingsman SM (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24: 1–14.Google Scholar
  8. Rizzi M, Harwart K, Erleman P, Bui-Thanh NA, Dellweg H (1989) Purification and properties of the NAD+-dependent xylitol dehydrogenase from yeast Pichia stipitis. J. Ferment. Bioeng. 67: 20–24.Google Scholar
  9. Shamanna DK, Sanderson KE (1979) Uptake and catabolism of Dxylose in Salmonella typhimurium LT2. J. Bacteriol. 139: 64–70.Google Scholar
  10. Smiley KL, Bolen PL (1982) Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol. Lett. 4: 607–610.Google Scholar
  11. van Zyl C, Prior BA, Kilian SG, Brandt EV (1993) Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 1487–1494.Google Scholar
  12. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.Google Scholar
  13. Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 4648–4651.Google Scholar
  14. Walker ME, Gardner JM, Vystavelova A, McBryde C, de Barros Lopes M, Jiranek V (2003) Application of the reuseable, Kan MX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Res. 4: 339–347.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ying Wang
    • 1
  • Wen-Long Shi
    • 1
  • Xiang-Yong Liu
    • 1
  • Yu Shen
    • 1
  • Xiao-Ming Bao
    • 1
  • Feng-Wu Bai
    • 2
  • Yin-Bo Qu
    • 1
  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityJinanP.R. China
  2. 2.Department of BioengineeringDalian University of TechnologyDalianP.R. China

Personalised recommendations