World Journal of Microbiology and Biotechnology

, Volume 20, Issue 1, pp 105–109 | Cite as

Phytase production by the thermophilic fungus Rhizomucor pusillus

  • B.S. Chadha
  • Gulati Harmeet
  • Minhas Mandeep
  • H.S. Saini
  • N. Singh

Abstract

A thermophilic fungus, Rhizomucor pusillus, isolated from composting soil, was studied for phytase production using solid-state fermentation. The optimization of phytase production was carried out by Box–Behnken design of experiments, using three independent variables (pH of medium, culture age and incubation period), resulting in a maximal level of phytase (9.18 units/g substrate). The partially purified phytase was optimally active at 70 °C and pH 5.4, though the enzyme showed ∼80% activity over a wide pH range, 3.0–8.0. The phytase was found to have broad substrate specificity.

Box–Behnken design characterization phytase production Rhizomucor pusillus SSF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berka, R.M., Rey, M.W., Brown, K.M., Byun, T. & Klotz, A.V. 1998 Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology 64, 4423–4427.Google Scholar
  2. Box, G.E.P. & Behnken, D.W. 1960 Some new three level design for study of quantitative variables. Technometrics 2, 455–475.Google Scholar
  3. Cooney, D.C. & Emerson, R. 1964 In Thermophilic Fungi: An Account of Their Biology, Activities and Classification. pp. 1–188. San Franscisco: W.H. Freeman & Co.Google Scholar
  4. Fredrikson, M., Andlid, T., Haikara, A. & Sandberg, A.S. 2002 Phytate degradation by micro-organisms in synthetic media and pea flour. Journal of Applied Microbiology 93, 197–204.Google Scholar
  5. Howson, S.J. & Davis, R.P.1983 Production of phytate hydrolyzing enzyme by some fungi. Enzyme and Microbial Technology 5, 377–382.Google Scholar
  6. Jermutus, L., Tessier, M., Pasamontes, L. Van Loon A.P.G.M. & Lehmann, M. 2001. Structure based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. Journal of Biotechnology 85, 15–24.Google Scholar
  7. Kim, D.S., Godber, J.S. & Kim, H. 1999 Culture conditions for a phytase producing fungus. Biotechnology Letters 21, 1077–1081.Google Scholar
  8. Krishna, C. & Nokes, S.E. 2001 Predicting vegetative inoculum performance to maximize phytase production in solid state fermentation using response surface methodology. Journal of Industrial Microbiology and Biotechnology 26, 161–170.Google Scholar
  9. Lassen, S.F. Breinholt, J, Ostergaard, P.R., Brugger, R., Bischoff, A., Wyss, M. & Fugslang, C.C. 2001 Expression, gene cloning and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediodes, a ceriporia sp., Trametes pubescens. Applied and Environmental Microbiology 67, 4701–4707.Google Scholar
  10. Lei, X.G. & Stahl, C.H. 2001 Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology 57, 474–481.Google Scholar
  11. Nagarajan, G. & Natarajan, K. 1999 The use of Box–Behnken design of experiments to study in vitro salt tolerance by Pisolithus tinctorius. World Journal of Microbiology and Biotechnology 15, 179–184.Google Scholar
  12. Miller, T.L. & Churchill, B.W. 1986 Substrates for large scale fermentations. In Manual of Industrial Microbiology, eds. Demain, A.L. & Solomons, N.A., pp. 122–136. Washington, D.C.: American Society for Microbiology. ISBN 0-91482673-5.Google Scholar
  13. Mitchell, D.B., Vogel, K., Weimann, B.J., Pasamontes, L. & van Loon A.P.G.M. 1997 The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143, 245–252.Google Scholar
  14. Papagianni, M., Nokes, S.E. & Filer, K. 1999 Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochemistry 35, 397–402.Google Scholar
  15. Pasamontes, L., Haiker, M. Henriquez-Huecas, M. Mitchell, D.B. & van Loon A.P.G.M. 1997 Cloning of the phytase from Emericella nidulans and the thermophilc fungus Talaromyces thermophilus. Biochimicaet Biophysica Acta 1353, 217–223.Google Scholar
  16. Radcliffe, J.S., Zhang, Z. & Kornegay, E.T. 1998 The effect of Microbial phytase, citric acid and their interaction in a corn soybean meal based diet for weanling pigs. Journal of Animal Sciences 76, 1880–1886.Google Scholar
  17. Stahl, C.H., Oneker, K.R., Thornton, J.R. & Lei, X.G. 2000 A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. Journal of Animal Sciences 78, 668–674.Google Scholar
  18. Sunitha, K., Kim, Y.O., Lee, J.K. & Oh, T.K. 2000 Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Biochemical Engineering Journal 5, 51–56.Google Scholar
  19. Tomschy, A., Bruger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., Lassen, S.F., Burger, D., Kronenberger, A., Van Loon, A.P.G.M., Pasamontes, L. & Wyss, M 2002 Engineering of phytase for improved activity at low pH. Applied and Environmental Microbiology 68, 1907–1913.Google Scholar
  20. Vohra, A. & Satyanarayana, T. 2002 Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anamola. Process Biochemistry 37, 999–1004.Google Scholar
  21. Wodzinski, R.J. & Ullah, A.H.J. 1996 Phytase. Advances in Applied Microbiology 42, 263–302.Google Scholar
  22. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. & van Loon, A.P.G.M. 1999 Biochemical characterization of fungal phyatases (Myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and Environmental Microbiology 65, 367–373.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • B.S. Chadha
    • 1
  • Gulati Harmeet
    • 1
  • Minhas Mandeep
    • 1
  • H.S. Saini
    • 1
  • N. Singh
    • 1
  1. 1.Department of Microbiology, Department of Food Sciences and TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations