Water, Air, and Soil Pollution

, Volume 158, Issue 1, pp 401–418 | Cite as

Dynamics of Organic C Mineralization and the Mobile Fraction of Heavy Metals in a Calcareous Soil Incubated with Organic Wastes

Article

Abstract

Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha−1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.

The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.

biochemical properties calcareous soil compost heavy metals humic substances C sewage sludge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almas, A.R., McBride, M.B. and Singh, B.R.: 2000, 'Solubility and lability of cadmium and zinc in two soils treated with organic matter', Soil Sci. 5, 250–259.Google Scholar
  2. Amrhein, C., Strong, J.E. and Mosher, P.A.: 1992, 'Effect of deicing salts on metal and organic matter mobility in roadside soils', Environ. Sci. Technol. 6, 703–709.Google Scholar
  3. Anderson T. and Domsch, K.H.: 1993, 'The metabolic quotient for CO2 (qCO2)as aspecific activity parameter to asses the effects of environmental conditions, such as pH, on the microbial biomass of the soil', Soil Biol. Biochem. 5, 393–395.Google Scholar
  4. Anderson, J.P.E. and Domsch, K.H.: 1978, 'A physiological method for the quantitative measurement of microbial biomass in soil', Soil Biol. Biochem. 0, 215–221.Google Scholar
  5. Berrow, M.L. and Webber, J.: 1972, 'Trace elements in sewage sludges', J. Sci. Food Agric. 3, 93–100Google Scholar
  6. Black, C.A. 1965.: Methods of Soil Analysis, American Society of Agronomy, Inc., Madison, Wisconsin, USA.Google Scholar
  7. Brallier, S., Harrison, R.B., Henry, C.L. and Dongsen, X.: 1996, 'Liming effects on availability of Cd, Cu, Ni, and Zn in a soil amended with sewage sludge 16 years previously', Water Air Soil Pollut. 6, 195–206.Google Scholar
  8. Brown, S., Chaney, R.L., Hallfrisch, J.G. and Xue, Q.: 2003, 'Effect of biosolids processing on lead bioavailability in an urban soil', J. Environ. Qual. 2, 100–108.Google Scholar
  9. Chander, K. and Brookes, P.C.: 1991, 'Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil', Soil Biol. Biochem. 3, 927–932.Google Scholar
  10. Chander, K., Brookes, P.C. and Harding, S.A.: 1995, 'Microbial biomass dynamic following ad-dition of metal-enriched sewage sludge to a sandy loam', Soil Biol. Biochem. 1409–1421.Google Scholar
  11. Chander, K., Dyckmans, J., Joergensen, R.G., Meyer, B.and Raubuch, M.: 2001, 'Different sources of heavy metals and their long-term effects on soil microbial properties', Biol. Fertil. Soils 4, 241–247.Google Scholar
  12. Chuan, M.C., Shu, G.Y. and Liu, J.C.: 1996, 'Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH', Water Air Soil Pollut. 543–556.Google Scholar
  13. Friedel, J.K., Langer, T., Siebe, C. and Stahr. K.: 2000, 'Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico', Biol. Fertil. Soils414–421.Google Scholar
  14. Goyal, S., Mishra, M.M., Dhankar, S.S., Kapoor, K.K. and Batra, R.: 1993, 'Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications', Biol. Fertil. Soils 5, 60–64.Google Scholar
  15. Holm, P.E., Anderson, B.B.H. and Christensen, T.H.: 1996, 'Cadmium solubility in aerobic soils', Soil Sci. Soc. Am.J. 0, 775–780.Google Scholar
  16. Jin, Q., Zi-jian, W., Xiao-quann, S., Qiang, T., Bei, W. and Bin, C.: 1996, 'Evaluation of plant avail-ability of soil trace metals by chemical fractionation and multiple regression analysis', Environ. Pollut. 1, 309–315.Google Scholar
  17. Johansson, M., Stenberg, B. and Torstensson, L.: 1999, 'Microbiological and chemical changes in two arable soils after long-term sludge amendments', Biol. Fertil. Soils 0, 160–167.Google Scholar
  18. Jörgensen, R.G.: 1996, 'The fumigation-extraction method to estimate soil microbial biomass: Cali-bration of the kEC value', Soil Biol. Biochem. 8,25–31.Google Scholar
  19. Kiikilä, O., Pennanen, T., Perkiömäki, J. and Derome, J.: 2002. 'Organic material as a copper immo-bilizing agent: A microcosm study on remediation', Basic Appl. Ecol. 3, 245–253.Google Scholar
  20. Leifeld, J., Siebert, S. and Kögel-Knabner, I.: 2002, 'Biological activity and organic matter min-eralization of soil amended with biowaste composts', J. Plant Nutr. Soil Sci. 5, 151–159.Google Scholar
  21. Leita, L., De Nobili, M., Muhlbachova, G., Mondini, C., Marchiol, L. and Zerbi, G.: 1995, 'Bioavail-ability and effects of heavy metals on soil microbial biomass survival during laboratory incuba-tion', Biol. Fertil. Soils 9, 103–108.Google Scholar
  22. Leita, L., Nobili, M.D. and Mondini, C.: 1999, 'Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability', Biol. Fertil. Soils 8, 371–376.Google Scholar
  23. McBride, M.B.: 1978, 'Transition metal bonding in humic acid: An ESR study', Soil Sci. 6, 200–209.Google Scholar
  24. McBride, M.B.: 1995, 'Toxic metal accumulation from agriculture use of sludge: Are USEPA regu-lations protective?', J. Environ. Qual. 4, 5–18.Google Scholar
  25. McBride, M., Sauve, S. and Hendershot, W.: 1997, Solubility control of Cu, Zn, Cd, and Pb in contaminated soil', Eur. J. Soil Sci. 8, 337–346Google Scholar
  26. Moolenaar, S.W. and Beltrami, P.: 1998, 'Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications', J. Environ. Qual. 7, 828–835.Google Scholar
  27. Moreno, J.L., Hernandez, T. and Garcia, C.: 1999, 'Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil', Biol. Fertil. Soils 8, 230–237.Google Scholar
  28. Morera, M.T., Echeverria, J. and Garrido, J.: 2002, 'Bioavailability of heavy metals in soils amended with sewage sludge', Can. J. Soil Sci. 2, 433–438.Google Scholar
  29. Neal, R.H. and Sposito, G.: 1986, 'Effects of soluble organic matter and sewage sludge amendments on Cd sorption by soils at low Cadmium concentrations', Soil Sci. 2, 164–172.Google Scholar
  30. Osman, A.Z., Wassif, M.M., El-Kadi, M.A. and Abdel Salam, M.A.: 1980, 'Effect of carbonate in clay fraction on fixation of zinc', Z. Pflanzenernähr. Bodenkdl. 3, 524–529.Google Scholar
  31. Pascual, J.A., Garcia, C. and Hernandez, T.: 1999, 'Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil', Biol. Fertil. Soils 0, 1–6.Google Scholar
  32. Pascual, J.A., Garcia, C., Hernandez, T. and Ayuso, M.: 1997, 'Changes in the microbial activity of an arid soil amended with urban organic wastes', Biol. Fertil. Soils 4, 429–434.Google Scholar
  33. Powlson, D.S., Brookes, P.C. and Christensen, B.T.: 1987, Measurements of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation', Soil Biol. Biochem. 9, 159–164.Google Scholar
  34. Richards, L.A.: 1960, Diagnosis and Improvement of Saline and Alkaline Soils, U.S. Salinity Labo-ratory, Agricultural handbook No. 60.Google Scholar
  35. Scheffer, F. and Schachtschabel, P.: 2002, Lehrbuch der Bodenkunde, 15. Auflage. Spektrum Akademischer Verlag Heidelberg. Berlin.Google Scholar
  36. Schlichting, E., Blume, H.P. and Stahr, K.: 1995, Bodenkundliches Praktikum, 2nd edn. Blackwell, Berlin.Google Scholar
  37. Silveira, M.L.A., Alleoni, L.R.F. and Guilherme, L.R.G.: 2003, 'Review: Biosolids and heavy metals in soils', Scientia Agricola 0, 793–806.Google Scholar
  38. Sloan, J.J. and Basta, N.T.: 1995, 'Remediation of acid soils by using alkaline biosolids', J. Environ. Qual. 4, 1097–1103.Google Scholar
  39. Sloan, J.J., Dowdy, R.H., Dolan, M.S. and Linden, D.R.: 1997, 'Long-term effects of biosolids applications on heavy metal bioavailability in agriculture soils', J. Environ. Qual. 6, 966–974.Google Scholar
  40. Speir, T.W., van Schaik, A.P., Lloyd-Jones, A.R. and Kettles, H.A.: 2003, 'Temporal response of soil after cultivation following high application rates of undigested sewage sludge', Biol. Fertil. Soils 8, 377–385.Google Scholar
  41. Strawn, D.G. and Sparks, D.L.: 2000, 'Effects of soil organic matter on the kinetics and mechanisms of Pb (II) sorption and desorption in soil', Soil Sci. Soc. Am.J. 4, 144–156.Google Scholar
  42. Temminghoff, E.J.M., van der Zee, S.E.A.T.M. and De Haan, F.A.M.: 1998, 'Effects of dissolved organic matter on the mobility of copper in a contaminated sandy soil', Eur. J. Soil Sci. 9, 617–628.Google Scholar
  43. Tyler, L.D. and McBride, M.B.: 1982, 'Mobility and extractability of cadmium, copper, nickle, and zinc in organic and mineral soil columns', Soil Sci. 4, 198–205.Google Scholar
  44. Van Dijk, J.: 1971, 'Cation binding of humic acids', Geoderma 5, 53–67.Google Scholar
  45. Vance, E.D., Brookes, P.C. and Jenkinson, D.S.: 1987, 'An extraction method for measuring microbial biomass C', Soil Biol. Biochem. 9, 703–707.Google Scholar
  46. Wang, P., Qu, E., Li, Z. and Shuman, L.M.: 1997, 'Fractions and availability of nickel in loessial soil amended with sewage or sewage sludge', J. Environ. Qual. 6, 795–801.Google Scholar
  47. Welp, G.: 1989, 'Löslichkeit und Bioverfügbarkeit von Umwelt-Chemikalien in Böden unter-schiedlichen Stoffbestandes', Mitteilgn. Dtsch. Bodenkdl. Ges. 9, 43–52.Google Scholar
  48. Welp, G.: 1999, 'Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil', Biol. Fertil. Soils 0, 132–139.Google Scholar
  49. Wong, J.W.C., Lai, K.M., Su, D.S. and Fang, M.: 2001, 'Availability of heavy metals for Brassica Chinensis growth in an acidic loamy soil amended with a domestic and an industrial sewage sludge', Water, Air Soil Pollut. 8, 339–353.Google Scholar
  50. Wu, J., Jörgensen, R.G., Pommerening, B., Chaussod, R. and Brookes, P.C.: 1990, 'Measurement of soil microbial biomass Cby fumigation-extraction-an automated procedure', Soil Biol. Biochem. 2, 1167–1169.Google Scholar
  51. Zeien, H. and Brümmer, G.W.: 1989, 'Chemische Extraktionen zur Bestimmung von Schwermetall-bindungsformen in Böden', Mitteilgn. Dtsch. Bodenkdl. Ges. 9, 505–510.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute of Soil Science and Land Evaluation (310)University of HohenheimStuttgartGermany

Personalised recommendations