Skip to main content
Log in

Availability of Cadmium in some Phosphorus Fertilizers to Field-Grown Lettuce

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Although evaluations of the availability of cadmium (Cd) contaminants in phosphate fertilizers have been made, few have examined the transfer efficiency of Cd from fertilizers to plants, especially under field conditions. This 2-year field study determined the transfer of added Cd to lettuce (Lactuca sativa L.) (Royal Green) from a western phosphate rock (PR) and a triple superphosphate (TSP) as affected by liming and rate of fertilizer (or Cd) input. A readily soluble Cd salt, CdCl2, was included in the study for comparison. The cumulative amounts of Cd added from the fertilizers and CdCl2 over the 2-year period ranged from 0 to 1440 g ha−1. Lettuce yield increased with increasing TSP rates, but was unaffected by PR. Significant (P < 0.01) effects of Cd source and rate, lime, and year were found on Cd accumulation by lettuce. The transfer of the added Cd was consistently higher for CdCl2 than for the fertilizers regardless of lime rate. A contrasting year effect was also found between the two P fertilizers. In the second year of application, the Cd transfer efficiency increased in the soil treated with the PR, but decreased in the soil treated with the TSP. The Cd transfer efficiency for the plant was better measured with DTPA–Cd (r 2= 0.78 − 0.80) or CaCl2−Cd (r 2= 0.57 − 0.76) than with soil total Cd (r 2= 0.39 to 0.54) across all Cd sources and lime rates. This is because DTPA–Cd or CaCl2–Cd reflected the influences of the amount of Cd added, Cd source, and lime rate on Cd accumulation by the plant better than did the soil total Cd. Of the amount of Cd added from the fertilizers an average of 1.0% or less was accumulated in the harvested lettuce tissue. Applications of the fertilizers at high rates could result in increased Cd accumulation in the soil over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armiger, W. H. and Fried, M.: 1957, 'The plant availability of various sources of phosphate rock', Soil Sci. Soc. Am. Proc. 21, 183–188.

    Google Scholar 

  • Bell, P. F., James, B. R. and Chaney, R. L.: 1991, 'Heavy metal extractability in long-term sewage sludge and metal salt-amended soils', 20, 481–486.

    Google Scholar 

  • Bjerre, G. K. and Schierup, H. H.: 1985, 'Uptake of six heavy metals by oat as influenced by soil type and additions of cadmium, lead, zinc and copper', Plant Soil 88, 57–69.

    Google Scholar 

  • Brown, S. L., Chaney R. L., Angle J. S. and Ryan, J. A.:1998, 'The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils', J. Environ. Qual. 27, 1071–1078.

    Google Scholar 

  • Chaney, R. L.: 1980, 'Health risks associated with toxic metals in municipal sludge', in G. Britton et al. (eds), Sludge-Health Risks of Land Application. Ann Arbor Sci. Publ., Ann Arbor, MI, pp.59–83.

    Google Scholar 

  • Chang, A. C., Page, A. L. and Wernicke, J. E.: 1987, 'Long-term sludge application on cadmium and zinc accumulation in swiss chard and radish', J. Environ. Qual. 16, 217–221.

    Google Scholar 

  • Chang, A. C., Hyun, H. M. and Page, A. L.: 1997, 'Cadmium uptake for swiss chard grown on composted sewage sludge treated field plots: PLATEAU or time bomb?', J. Environ. Qual. 26, 11–19.

    Google Scholar 

  • Chen, B., Shan, X. and Qian, J.: 1996, 'Bioavailability index for quantitative evaluation of plant availability of extractable soil trace elements', Plant Soil 186, 275–283.

    Google Scholar 

  • Chen, M. and Ma, L. O.: 1998, 'Comparison of four USEPAdigestion methods for trace metal analysis using certified and Florida soils', J. Environ. Qual. 27, 1294–1300.

    Google Scholar 

  • Crews, H. M. and Davies, B. E.: 1985, 'Heavy metal uptake from contaminated soils by six varieties Of lettuce (Lactuca Sativa L.)', J. Agric. Sci. Camb. 105, 591–595.

    Google Scholar 

  • Cunningham, J. D., Ryan, J. A. and Keeney, D. R.: 1975, 'Phytotoxicity and metal uptake of metals added to soils as inorganic salts or in sewage sludge', J. Environ. Qual. 4, 460–462.

    Google Scholar 

  • De Pieri, L. A., Buckley, W. T. and Kowalenko, C. G.: 1997, 'Cadmium and lead concentrations of commercially grown vegetables and of soils in the lower fraser valley of british columbia', Canadian J. Soil Sci. 77, 51–57.

    Google Scholar 

  • Grant, C. A. and Bailey, L. D.: 1998, 'Nitrogen, phosphorus and zinc fertilizer management effects on grain and cadmium concentration in two cultivars of durum wheat', Canadian J. Plant Sci. 78, 63–70.

    Google Scholar 

  • Grant, C. A., Buckley, W. T., Bailey, L. D. and Selles, F.: 1998, 'Cadmium accumulation in crops', Canadian J. Plant Sci. 78, 1–17.

    Google Scholar 

  • Guttormsen, G., Singh, B. R. and Jeng, A. S.: 1995, 'Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH', Fertilizer Res. 41, 27–32.

    Google Scholar 

  • He, Q. B. and Singh, B. R.: 1994, 'Crop uptake of cadmium from phosphorus fertilizers. II. relationship with extractable soil cadmium', Water Air Soil Pollut. 74, 251–265.

    Google Scholar 

  • Heckmen, J. R., Angle, J. S. and Chaney, R. L.: 1987, 'Residual effects of sewage sludge on soybean: I. accumulation of heavy metals', J. Environ. Qual. 16, 113–117.

    Google Scholar 

  • Huang, B., Kuo, S. and Bembenek, R.: 2003, 'The availability to leaf lettuce of cadmium and zinc in some phosphorus and trace element fertilizers', Water Air Soil Pollut. 147, 109–127.

    Google Scholar 

  • Hyun, H. M., Chang, A. C., Parker, D. R. and Page, A. L.: 1998, 'Cadmium solubility and phytoavail-ability in sludge-treated soil: Effects of soil organic carbon, J. Environ. Qual. 27, 329–334.

    Google Scholar 

  • Iretskaya, S. N., Chien, S. H. and Menon, R. G.: 1998, 'Effect of acidulation of high cadmium containing phosphate rocks on cadmium uptake by upland rice', Plant Soil 201, 183–188.

    Google Scholar 

  • Jacobsen, J. and Lorbeer, S.: 2002, 'Metal concentrations in three montana soils following 20 years of fertilization and cropping', Commun. Soil Sci. Plant Anal. 33, 1401–1414.

    Google Scholar 

  • Jeng, A. S. and Singh, B. R.: 1995, 'Cadmium status of soils and plants from a long-term fertility experiment in southeast norway', Plant Soil 175, 67–74.

    Google Scholar 

  • Jinadasa, K. B. P. N., Milham, P. J., Hawkins, C. A., Cornish, P. S., Williams, P. A., Kaldor, C. J. and Conroy, J. P.: 1997, 'Survey of cadmium levels in vegetables and soils of greater sydney, Australia', J. Environ. Qual. 26, 924–933.

    Google Scholar 

  • Jones, K. C. and Johnston, A. E.: 1989, 'Cadmium in cereal grain and herbage from long-term experiment plots at rothamsted UK', Environ. Pollut. 57:199–216.

    Google Scholar 

  • Kiekens, L., Cottenie, A. and van Landschoot, G.: 1984, 'Chemical activity and biological effect of sludge-borne heavy metals and inorganic metal salts added to soils', Plant Soil 79: 89–99.

    Google Scholar 

  • Krebs, R., Gupta, S. K., Furrer, G. and Schulin, R.: 1998, 'Solubility and plant uptake of metals with and without liming of sludge-amended soils', J. Environ. Qual. 27, 18–23.

    Google Scholar 

  • Kuo, S. and McNeal, B. L.: 1984, 'Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide', Soil Sci. Soc. Am. J. 48, 1040–1044.

    Google Scholar 

  • Kuo, S., Jellum, E. J. and Baker, A. S.: 1985, 'Effects of soil type, liming, and sludge application on zinc and cadmium availability to swiss chard', Soil Sci. 139, 122–130.

    Google Scholar 

  • Lindsay, W. L. and Norvell, W. A.: 1978, 'Development of a DTPA soil test for zinc, iron, manganese, and copper', Soil Sci. Soc. Am. J. 42, 421–428.

    Google Scholar 

  • Loganathan, P., Mackay, A. D., Lee, J. and Hedley, M. J.: 1995, 'Cadmium distribution in hill pastures as influenced by 20 years of phosphate application and sheep grazing', Aust. J. Soil Res. 33, 859–871.

    Google Scholar 

  • McBride, M. E.: 1995, 'Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective?', J. Environ. Qual. 24, 5–18.

    Google Scholar 

  • Mortvedt, J. J.: 1985, 'Plant uptake of heavy metals in zinc fertilizers made from industrial by-products', J. Environ. Qual. 14, 424–427.

    Google Scholar 

  • Mortvedt, J. J.: 1987, 'Cadmium levels in soils and plants from some long-term soil fertility experiments in the united states of america', J. Environ. Qual. 16 137–142.

    Google Scholar 

  • Mortvedt, J. J., Mays, D. A. and Osborn, G.: 1981, 'Uptake by wheat of cadmium and other heavy metal contaminants in phosphate fertilizers', J. Environ. Qual. 10 193–197.

    Google Scholar 

  • Mortvedt, J. J.: 1996, 'Heavy metal contaminants in inorganic and organic fertilizers', Fertilizer Res. 61, 55–61

    Google Scholar 

  • Mulla, D. J., Page, A. L. and Ganje, T. J.: 1980, 'Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization', J. Environ. Qual. 9, 408–412.

    Google Scholar 

  • Nicholson, F. A., Jones, K. C. and Johnston, A. E.: 1994, 'Effect of phosphate fertilizers and atmospheric deposition on long-term changes in the cadmium content of soils and crops' Environ. Sci. Technol. 28, 2170–2175.

    Google Scholar 

  • Pierzynski, G. M. and Schwab, A. P.: 1993, 'Bioavailability of zinc, cadmium, and lead in a metal-contaminated alluvial soil', J. Environ. Qual. 22, 247–254.

    Google Scholar 

  • Raven, K. P. and Leoppert, R. H.: 1997, 'Trace element composition of fertilizers and soil amendments',J.Environ. Qual. 26, 551–557.

    Google Scholar 

  • Richards, I. R., Clayton, C. J. and Reeve, A. J. K.: 1998, 'Effects of long-term fertilizer phosphorus application on soil and crop phosphorus and cadmium contents', J. Agri. Sci. 131, 187–195.

    Google Scholar 

  • SAS Institute: 1989, 'SAS/STAT User's Guide', Version 6 Vol. 2., 4th ed., SAS, Inc., Cary, NC.

    Google Scholar 

  • Schindler, P. W.: 1981, 'Surface complexes at the solid-liquid interface', in M.A. Anderson and A.J. Rubin (eds), Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Sci. Publ., Ann Arbor, MI, pp. 1–49.

    Google Scholar 

  • Singh, B. R. Narwal, R. P., Jeng, A. S. and Almås, Å.: 1995, 'Crop uptake extractability of cadmium in soils naturally high in metals at different pH levels', Commun. Soil Sci. Plant Anal. 262123–2142.

    Google Scholar 

  • Smilde, K. W., van Luit, B. and van Driel, W.: 1992, 'The extraction by soil and absorption by plants of applied zinc and cadmium', Plant Soil 143, 233–238.

    Google Scholar 

  • Street, J. J., Sabey, R. B. and Lindsay, W. L.: 1978, 'Influence of pH, phosphorus, cadmium, sewage sludge, and incubation time on the solubility and plant availability of cadmium',J.Environ. Qual. 7, 286–290.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA): 1986, 'Acid Digestion of Sediments, Sludges, and Soils', in Test Methods for Evaluating Solid Waste, 3rd ed, USEPA SW-S846. U.S. Govt. Print Office. Washington DC, pp. 30501–30594.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA): 1992, 'The Technical Support Document for Land Application of Sewage Sludge', United States Environmental Protection Agency, Office of Water, Washington DC. 822/R-93-001a and 001b.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA): 1998, 'Assessment of Risk from Fertilizer Use', Work Assignment Number B-17, Amendment 1, United States Environmental Protection Agency, Office of Solid Waste, Washington DC.

    Google Scholar 

  • Williams, C. H. and David, D. J.: 1973, 'The effect of superphosphate on the cadmium content of soils and plants', Aust. J. Soil Res. 11, 43–56.

    Google Scholar 

  • Williams, C. H. and David, D. J.: 1976, 'The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants', Soil Sci. 121, 86–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Kuo, S. & Bembenek, R. Availability of Cadmium in some Phosphorus Fertilizers to Field-Grown Lettuce. Water, Air, & Soil Pollution 158, 37–51 (2004). https://doi.org/10.1023/B:WATE.0000044832.04770.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000044832.04770.41

Navigation