Water, Air, and Soil Pollution

, Volume 157, Issue 1–4, pp 133–148 | Cite as

Computations on the Volatilisation of the Fungicide Fenpropimorph from Plants in a Wind Tunnel

Abstract

Volatilisation of pesticides from plants is one of the main pathways for their emission to the environment. A simplified computation model was set up to simulate this volatilisation, including penetration into plants and photochemical transformation as competing processes. Previous wind tunnel experiments using plants sprayed with 14C-labelled fenpropimorph were simulated using the model. Volatilisation could be simulated by diffusion through a laminar air-boundary layer, with a thickness in the range of 0.5-1.0 mm. Rate coefficients of 1.7-4.8 d−1 had to be used to simulate the penetration of fenpropimorph into different plant species. The rate of phototransformation was lowest when the incoming air stream was filtered through activated carbon, thus minimising the formation of hydroxyl radicals by sunlight. The simulations enabled us to estimate model parameters that could neither be derived from laboratory studies nor could be obtained with pesticide (non-labelled) in the field.

air diffusion leaves micro-ecosystem model pesticide photodegradation transformation uptake vapour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedos, C., Cellier, P., Calvet, R., Barriuso, E. and Gabrielle, B.: 2002, ‘Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview’, Agronomie 22, 21-33.CrossRefGoogle Scholar
  2. Deymann-Schlag, A.: 1981, ‘Untersuchungen zu Aufnahme und Transport der systemischen Fungizide Tridemorph und Fenpropimorph und ihrer Wirkungsweise gegen den echten Mehltau an Getreide, Erysiphe graminis D.C. Marchal’, Ph.D. Thesis, Hohen Landwirtschaftlichen Fakultät, University of Bonn, Germany, 146 pp.Google Scholar
  3. Grain, C. F.: 1982, ‘Vapor Pressure’, in W. J. Lyman, W. F. Reehl and D. H. Rosenblatt (eds.), Handbook of Chemical Property Estimation Methods. Environmenal Behavior of Organic Compounds, Chapter 14, McGraw-Hill, New York, pp. 1-20.Google Scholar
  4. Hashimoto, A.: 1989, ‘A kinetic study on the evaporation of pesticides on glass surface in air current’, J. Pestic. Sci. 14, 457-464.Google Scholar
  5. Jury, W. A., Spencer, W. F. and Farmer, W. J.: 1983, ‘Behavior assessment model for trace organics in soil. I. Model description’, J. Environ. Qual. 12, 558-564.Google Scholar
  6. Kröhl, T., Kastel, R., König,W., Zoegler, H., Köhle, H. and Parg, A.: 1998, ‘Methods for determining the vapour pressure of active ingredients used in crop protection. Part V. Thermogravimetry Combined with solid phase microextraction (SPME)’, Pestic. Sci. 53, 300-310.CrossRefGoogle Scholar
  7. Ophoff, H.: 1998, ‘Verflüchtigung und Mineralisierung von Fluoranthen, Parathion-methyl und Fenpropimorph unter simulierten Freilandbedingungen’, Ph.D. Thesis, Hohen Landwirtschaftlichen Fakultät, University of Bonn, Germany, 205 pp.Google Scholar
  8. Ophoff, H., Führ, F., Stork, A. and Smelt, J. H.: 1999, ‘Volatilization of Fenpropimorph Under Simulated Field Conditions After Application onto Different Plants’, in A.A.M. Del Re, C. Brown, E. Capri, G. Errera, S.P. Evans and M. Trevisan (eds), Human and Environmental Exposure to Xenobiotics, Proceedings of the XI Symposium Pesticide Chemistry, Cremona, Italy, 11-15 September 1999, La Goliardica Pavese, Pavia, Italy, pp. 199-209.Google Scholar
  9. Scholtz, M. T., Voldner, E., McMillan, A. C. and Van Heyst, B. J.: 2002a, ‘A pesticide emission model (PEM). Part I. Model development’. Atmos. Environ. 36, 5005-5013.CrossRefGoogle Scholar
  10. Scholtz, M. T., Voldner, E., Van Heyst, B. J., McMillan, A. C. and Pattey, E.: 2002b, ‘A pesticide emission model (PEM). Part II. Model evaluation’. Atmos. Environ. 36, 5021-5030.Google Scholar
  11. Smit, A. A. M. F. R., van den Berg, F. and Leistra, M.: 1997, ‘Estimation method for the volatilisation of pesticides from fallow soil’, Environmental Planning Bureau Series 2, DLO Winand Staring Centre, Wageningen, The Netherlands, 107 pp.Google Scholar
  12. Staimer, N., Müller, T. and Kubiak, R.: 1996, ‘Volatilization of C-14-labelled fenpropimorph after application to plants and soil under simulated outdoor conditions’, Intern. J. Environ. Anal. Chem. 65, 183-191.Google Scholar
  13. Stork, A., Ophoff, H., Smelt, J. H. and Führ, F.: 1998, ‘Volatilization of pesticides. Measurements under simulated field conditions’, in F. Führ, R.J. Hance, J.R. Plimmer and J.O. Nelson (eds.), The Lysimeter Concept, ACS Symposium Series 699, American Chemical Society, Washington, DC, pp. 21-39.Google Scholar
  14. Tinsley, I. J.: 1979, Chemical Concepts in Pollutant Behaviour, John Wiley & Sons, New York, pp. 5-7.Google Scholar
  15. Tomlin, C. D. S.: 2000, The Pesticide Manual. A World Compendium, 12th edn., British Crop Protection Council, Farnham, Surrey, UK, pp. 399-400.Google Scholar
  16. Tucker, W. A. and Nelken, L. H.: 1982, ‘Diffusion Coefficients in Air and Water’, in W. J. Lyman, W. F. Reehl and D. H. Rosenblatt (eds), Handbook of Chemical Property Estimation Method. Environmenal Behavior of Organic Compounds, Chapter 17, McGraw-Hill, New York, pp. 1-25.Google Scholar
  17. van den Berg, F., Kubiak, R., Benjey, W. G., Majewski, M. S., Yates, S. R., Reeves, G. L., Smelt, J. H. and van der Linden, A. M. A.: 1999, ‘Emission of pesticides into the air’, Water Air Soil Pollut. 115, 195-218.CrossRefGoogle Scholar
  18. Willis, G. H. and McDowell, L. L.: 1987, ‘Pesticide persistence on foliage’, Rev. Environ. Contam. Toxicol. 100, 23-73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Alterra Green World ResearchWageningen University and Research CentreWageningen, TheNetherlands.
  2. 2.Institute of Chemistry and Dynamics of the Geosphere IV:Agrosphere, Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations