Advertisement

Water, Air, and Soil Pollution

, Volume 156, Issue 1–4, pp 241–249 | Cite as

Flumequine Uptake and the Aquatic Duckweed, Lemna minor L.

  • Antonella Cascone
  • Cinzia Forni
  • Luciana Migliore
Article

Abstract

Phytotoxicity of Flumequine (F) on the aquatic duckweed, Lemna minor L., and plant drug uptake were evaluated by a simple ecotoxicological test. Flumequine, at all concentrations between 50 and 1000 μg L-1 tested, affected the plant growth: leaves and roots were damaged, but duckweed continued to grow on a five weeks period. Furthermore, increasing drug concentrations decreased the chlorophyll b content in plants. These effects depend on F uptake by plants, which is quite high (from 0.72 to 13.93 μg g-1 plant dry weight). Based on this activity, Lemna can be taken into consideration as a tool for in situ remediation of drug contaminated waters: the presence of Lemna significantly lower the F concentration in culture media on a five weeks period. Results strongly support its remediation capability.

bioremediation drug uptake duckweed Flumequine Lemna minor phytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderman, D. J. and Michel, C.: 1992, ‘Chemotherapy in aquaculture today’, in C. Michel and D. J. Alderman (eds), Chemotherapy in Aquaculture: From Theory to Reality, O.I.E., Paris, France, pp. 3–22.Google Scholar
  2. Axtell, N. R., Sternberg, S. P. K. and Claussen, K.: 2003 ‘Lead and nickel removal using Microspora and Lemna minor’, Bioresour. Technol. 89, 41–48.PubMedGoogle Scholar
  3. Forni, C., Cascone, A., Fiori, M. and Migliore, L.: 2002, ‘Sulphadimethoxine and Azolla filiculoidesLam.: a model for drug remediation’, Water Res. 36, 3398–3403.PubMedGoogle Scholar
  4. Forni, C., Chen, J., Tancioni, L. and Grilli Caiola, M.: 2001a, ‘Evaluation of the fern Azollafor growth, nitrogen, and phosphorus removal from wastewater’, Water Res. 35(6), 1592–1598.PubMedGoogle Scholar
  5. Forni, C., Nicolai, M. A. and D’Egidio, M. G.: 2001b, ‘Potential of the small aquatic plants Azollaand Lemnafor nitrogenous compounds removal from wastewater’, in C. A. Trebbia (ed.), Water Pollution VI. Modeling, Measuring and Prediction, WIT Press, Southampton, Boston, U.S.A., pp. 315–324.Google Scholar
  6. Forni, C., Valle, G. and De Martino, A.: 2003, ‘Potenzialità di diversi sistemi di biorimedio delle acque: Batteri e macrofite acquatiche’, Accademia dei Lincei/Atti, Roma, Italy, 192, pp. 151–160.Google Scholar
  7. Hektoen, H., Berge, J. A., Hormazabal, V. and Yndestad, M.: 1995, ‘Resistance of antibacterial agents in marine sediments’, Aquaculture 133, 175–184.Google Scholar
  8. Jjemba, P. K.: 2002, ‘The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: A review’, Agricult. Ecosyst. Environ. 93, 267–278.Google Scholar
  9. Korner, S., Lyatuu, G. B. and Vermaat, J. E.: 1998, ‘The influence of Lemna gibbaL. on the degradation of organic material in duckweed-covered domestic wastewater’, Water Res. 32, 3092–3098.Google Scholar
  10. Lunestad, B. T., Hansen, P. K., Samuelsen, O. and Erwik, A.: 1993, ‘Environmental effects of antibacterial agents from aquaculture’, in N. Haagsma, A. Ruiter and P. B. Czedik-Eysenberg (eds), Proceeding of Euroresidue II. Residues of Veterinary Drugs in Food, Vol. II, ADDIX, Wijk bij Duurstede, The Netherlands, pp. 460–464.Google Scholar
  11. Lunestad, B. T., Samuelsen, O. B., Fjelde, S. and Ervik, A.: 1995, ‘Photostability of eight antibacterial agents in seawater’, Aquaculture 134, 217–225.Google Scholar
  12. MacKinney, G.: 1941, ‘Adsorption of light by chlorophyll solutions’, J. Biol. Chem. 140, 315–322.Google Scholar
  13. Migliore, L., Alessi, E., Busani, L. and Caprioli, A.: 2002, ‘Effects of the use of Flumequine in aquaculture: microbial resistance and sediment contamination’, Fres. Environ. Bull. 11(9), 557–561.Google Scholar
  14. Migliore, L., Cozzolino, S. and Fiori, M.: 2003, ‘Phytotoxicity to and uptake of enrofloxacin in plants’, Chemosphere 52(7), 1233–1244.PubMedGoogle Scholar
  15. Migliore, L., Cozzolino, S. and Fiori, M.: 2000, ‘Phytotoxicity to and uptake of Flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicariaL.’, Chemosphere 40, 741–750.PubMedGoogle Scholar
  16. Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G. and Gaudio, L.: 1998, ‘Laboratory models to evaluate phytotoxicity sulphadimethoxine on terrestrial plants’, Chemosphere 37(14–15), 2957–2961.Google Scholar
  17. Migliore, L., Brambilla, G., Casoria, P., Civitareale, C., Cozzolino, S. and Gaudio, L.: 1996, ‘Effect of sulphadimethoxine on barley (Hordeum distichumL., Poacee, Liliopsida) in laboratory terrestrial models’, Agricult. Ecosyst. Environ. 60, 121–128.Google Scholar
  18. Migliore, L., Lorenzi, C., Civitareale, C., Laudi, O. and Brambilla, G.: 1995, ‘La Flumequina e gli Ecosistemi Marini: Emissione con l’Acquacoltura e Tossicità su Artemia salina(L.)’, in O. Ravera and A. Anelli (eds), S.IT.E./Atti 16Edizioni Zara, Parma Italy, pp. 365–368.Google Scholar
  19. Quevauviller, P. and Maier, E. A.: 1994, ‘Quality assurance of sampling and sample pre-treatment for soil and sediment analysis’, in European Commission, Environmental Quality of Life. Research Trends in the Field of Environmental Analysis. Results of Scientific Workshop Held within the Measurement and Testing Programme (BCR). Final Report, Directorate General, Science, Research and Development.Google Scholar
  20. Tripathi, B. D. and Upadhyay, A. R.: 2003, ‘Dairy effluent polishing by aquatic macrophytes’, Water, Air, Soil Pollut. 143(1), 377–385.Google Scholar
  21. Van der Heijden, M. H. T., Booms, G. H. R., Tanck, M.W. T., Rombout, J. H.W.M. and Boon, J. H.: 1995, ‘Influence of Flumequine on in vivomitogen responses of European eel (Anguilla anguillaL., 1758) lymphoid cells’, Veter. Immunol. Immunopath. 47(1–2), 143–152.Google Scholar
  22. Vermaat, J. E. and Hanif, M. K.: 1998, ‘Performance of common dukcweed species (Lemnaceae) and waterfern Azolla filiculoideson different types of waste water’, Water Res. 32(9), 2569–2576.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Antonella Cascone
    • 1
  • Cinzia Forni
    • 1
  • Luciana Migliore
    • 1
  1. 1.Dipartimento di BiologiaUniversitàdi Roma ‘Tor Vergata’RomeItaly

Personalised recommendations