Advertisement

Water Resources Management

, Volume 18, Issue 3, pp 201–218 | Cite as

The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series

  • Sheng YueEmail author
  • ChunYuan Wang
Article

Abstract

The non-parametric Mann-Kendall (MK) statistical test has been popularly used to assess the significance of trend in hydrological time series. The test requires sample data to be serially independent. When sample data are serially correlated, the presence of serial correlation in time series will affect the ability of the test to correctly assess the significance of trend. To eliminate the effect of serial correlation on the MK test, effective sample size (ESS) has been proposed to modify the MK statistic. This study investigates the ability of ESS to eliminate the influence of serial correlation on the MK test by Monte Carlo simulation. Simulation demonstrates that when no trend exists within time series, ESS can effectively limit the effect of serial correlation on the MK test. When trend exists within time series, the existence of trend will contaminate the estimate of the magnitude of sample serial correlation, and ESS computed from the contaminated serial correlation cannot properly eliminate the effect of serial correlation on the MK test. However, if ESS is computed from the sample serial correlation that is estimated from the detrended series, ESS can still effectively reduce the influence of serial correlation on the MK test.

effective sample size Mann-Kendall test serial correlation statistical hydrology trend analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayley, G. V. and Hammersley, J. M.: 1946, 'The effective number of independent observations in an autocorrelated time series', J. Roy. Statist. Soc. 8(1B), 184-197.Google Scholar
  2. Brillinger, D. R.: 1989, 'Consistent detection of a monotonic trend superposed on a stationary time series', Biometrika 76(1), 23-30.Google Scholar
  3. Burn, D. H. and Hag Elnur, M. A.: 2002, 'Detection of hydrological trends and variability', J. Hydrol. 255(1-4), 107-122.Google Scholar
  4. Cailas, M. D., Cavadias, G. and Gehr, R.: 1986, 'Application of a nonparametric approach for monitoring and detecting trends in water quality data of the St. Lawrence River', Water Poll. Res. J. Canada 21(2), 153-167.Google Scholar
  5. Chiew, F. H. S. and McMahon, T. A.: 1993, 'Detection of trend or change in annual flow of Australian rivers', Int. J. Climatol. 13, 643-653.Google Scholar
  6. Crawford, C. G., Slack, J. R. and Hirsch, R. M.: 1983, 'Nonparametric tests for trend in water quality data using the statistical analysis system', Open Report No. 83-550, U.S. Geological Survey, USA.Google Scholar
  7. Demaree, G. R. and Nicolis, C.: 1990, 'Onset of Sahelian drought viewed as a fluctuation-induced transition', Q.J.R., Meteorol. Soc. 116, 221-238.Google Scholar
  8. Douglas, E. M., Vogel, R. M. and Kroll, C. N.: 2000, 'Trends in floods and low flows in the United States: impact of spatial correlation', J. Hydrol. 240, 90-105}.Google Scholar
  9. Environment Canada: 1999, Establishment of the Reference Hydrometric Basin Network (RHBN) for Canada.Google Scholar
  10. Gan, T. Y.: 1998, 'Hydroclimatic trends and possible climatic warming in the Canadian Prairies', Water Res. Res. 34(11), 3009-3015.Google Scholar
  11. Hamed, K. H. and Rao, A. R.: 1998, 'A modified Mann-Kendall trend test for autocorrelated data', J. Hydrol. 204, 182-196.Google Scholar
  12. Hamilton, J. P., Whitelaw, G. S. and Fenech, A.: 2001, 'Mean annual temperature and annual precipitation trends at Canadian biosphere reserves', Envir. Monit. Assess. 67, 239-275.Google Scholar
  13. Hirsch, R. M. and Slack, J. R.: 1984, 'Non-parametric trend test for seasonal data with serial dependence', Water Resour. Res. 20(6), 727-732.Google Scholar
  14. Hirsch, R. M., Slack, J. R. and Smith, R. A.: 1982, 'Techniques of trend analysis for monthly water quality data', Water Resour. Res. 18(1), 107-121.Google Scholar
  15. Hipel, K. W., McLeod, A. I. and Weiler, R. R.: 1988, 'Data analysis of water quality time series in Lake Erie', Water Res. Bull. 24(3), 533-544.Google Scholar
  16. Kendall, M. G.: 1975, Rank Correlation Methods, Griffin, London.Google Scholar
  17. Mann, H. B.: 1945, 'Nonparametric tests against trend', Econometrica 13, 245-259.Google Scholar
  18. Matalas, N. C. and Langbein, W. B.: 1962, 'Information content of the mean', J. Geophys. Res. 67(9), 3441-3448.Google Scholar
  19. McLeod, A. I. and Hipel, K. W.: 1994, 'Tests for monotonic trend', in Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 3, 245-270.Google Scholar
  20. Lettenmaier, D. P.: 1976, 'Detection of trends in water quality data from records with dependent observations', Water Resour. Res. 12(5), 1037-1046.Google Scholar
  21. Lettenmaier, D. P., Wood, E. F. and Wallis, J. R.: 1994, 'Hydro-climatological trends in the continental United States, 1948-88', J. of Climate 7, 586-607.Google Scholar
  22. Lins, H. F. and Slack, J. R.: 1999, 'Streamflow trends in the United States', Geophys. Res. Lett. 26(2), 227-230.Google Scholar
  23. Salas, J. D., Delleur, J. W., Yevjevich, V. and Lane, W. L.: 1980, Applied Modelling of Hydrologic Time Series, Water Resources Publications, Littleton, Co., USA.Google Scholar
  24. Sen, P. K.: 1968, 'Estimates of the regression coefficient based on Kendall's tau', J. American Statist. Assoc. 63, 1379-1389.Google Scholar
  25. Steele, T. D., Gilroy, E. J. and Hawkinson, R. O.: 1974, 'Techniques for the assessment of areal and temporal variations in streamflow quality', Open File Report, U.S. Geol. Surv., Washington, D.C.Google Scholar
  26. Taylor, C. H. and Loftis, J. C.: 1989, 'Testing for trend in lake and groundwater quality time series', Water Res. Bull. 25(4), 715-726.Google Scholar
  27. Theil, H.: 1950, 'A rank-invariant method of linear and polynomial regression analysis, I, II, III', Nederl. Akad. Wetensch. Proc. 53, 386-392; 512-525; 1397-1412.Google Scholar
  28. van Belle, G. and Hughes, J. P.: 1984, 'Nonparametric tests for trend in water quality', Wat er Res. Res. 20(1), 127-136.Google Scholar
  29. von Storch, V. H.: 1995, 'Misuses of statistical analysis in climate research', in H. V. Storch and A. Navarra (eds), Analysis of Climate Variability: Applications of Statistical Techniques, Springer-Verlag Berlin, 11-26.Google Scholar
  30. Yu, Y. S., Zou, S. and Whittemore, D.: 1993, 'Non-parametric trend analysis of water quality data of river in Kansas', J. Hydrol. 150, 61-80.Google Scholar
  31. Yue, S. and Hashino: 2003, 'Long term trends of annual and monthly precipitation in Japan', J. Amer. Water Res. Assoc. 39(3), 587-596.Google Scholar
  32. Yue, S., Pilon, P. and Cavadias, G.: 2002a, 'Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series', J. Hydrol. 259(1-4), 254-271.Google Scholar
  33. Yue, S., Pilon, P., Phinney, B. and Cavadias, G.: 2002b, 'The influence of autocorrelation on the ability to detect trend in hydrological series', Hydrol. Processes 16, 1807-1829.Google Scholar
  34. Yue, S. and Wang, C. Y.: 2002, 'The applicability of pre-whitening to eliminate the influence of serial correlation on the Mann-Kendall test', Water Res. Res. 38(6), 10.1029/2001WR000861, 4-1-7.Google Scholar
  35. Zetterqvist, L.: 1991, 'Statistical estimation and interpretation of trends in water quality time series', Water Res. Res. 27(8), 1637-1648.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology DivisionUS Environmental Protection AgencyDuluthU.S.A.
  2. 2.Water Resources & Hydropower Section, One-Evaluation DepartmentChina Development BankBeijingP.R. China

Personalised recommendations