Water, Air and Soil Pollution: Focus

, Volume 4, Issue 4–5, pp 359–373 | Cite as

Evaluating Charcoal Presence in Sediments and its Effect on Phenanthrene Sorption

  • Hrissi K. Karapanagioti
  • Gavin James
  • David A. Sabatini
  • Stavros Kalaitzidis
  • Kimon Christanis
  • Orjan Gustafsson


Small amounts of charcoal in sediments can highly impact the sorption of organic compounds in single solute systems and at low relative concentrations. In the present study, the heterogeneous sorption behavior of charcoals is demonstrated through batch sorption experiments with phenanthrene. The utility of the black carbon content, as measured for soot materials, is evaluated as a measure of the nature of the charcoal material present in sediments. Black carbon content measurements improved predictions of sorptive properties through an additive model but were not sufficient in fully explaining the sorptive behavior observed for the sediments studied in the present work. This is also corroborated through the low and inconsistent measurements of black carbon content observed for laboratory-produced wood chars and natural charcoal samples. Since a quantitative means for prediction of sediment sorptive behavior is not readily available, a more detailed organic petrographical investigation of the charcoals present in sediment samples is pursued. This is a standard method that allows characterization of all (>1-2 μm) organic particles found in a sample. While petrographic methods provide a qualitative description of the sample, it is not possible to use the results to quantitatively predict the overall sorption properties based on this analysis alone. Thus, careful interpretation of qualitative (i.e. microscopy) and quantitative (i.e. black carbon fraction) results should lead us to the determination of a new quantitative property to be used as a predictive tool.

black carbon charcoal inertinite organic-content-normalized sorption coefficient (Korganic petrography phenanthrene sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accardi-Dey, A. and Gschwend, P. M.: 2002, ‘Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments’, Environ. Sci. Technol. 36, 21-29.CrossRefGoogle Scholar
  2. American Society for Testing and Materials (ASTM D2797): 1990, Preparing Coal Samples for Microscopical Analysis by Reflected Light, ASTM Standard D2797.Google Scholar
  3. Bucheli, T. and Gustafsson, Ö.: 2000, ‘Quantification of the soot-water distribution coefficient of pahs provides mechanistic basis for enhanced sorption observations’, Environ. Sci. Technol. 34, 5144-5151.CrossRefGoogle Scholar
  4. Chiou, C. T.: 1995, ‘Comment on thermodynamics of organic chemical partition in soils’, Environ.Sci. Technol. 29, 1421-1422.CrossRefGoogle Scholar
  5. Chiou, C. T., Kile, D. E., Rutherford, D. W., Sheng, G. and Boyd, S. A.: 2000, ‘Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity’, Environ. Sci. Technol. 34, 1254-1258.CrossRefGoogle Scholar
  6. Chiou, C. T. and Kile, D. E.: 1998, ‘Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations’, Environ. Sci. Technol. 32, 338-343.CrossRefGoogle Scholar
  7. Chiou, C. T., Peters, L. J. and Freed, V. H.: 1979, ‘A physical concept of soil-water equilibria for nonionic organic compounds’, Science 206, 831-832.Google Scholar
  8. Dachs, J. and Eisenreich, S.: 2000, ‘Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons’, Environ. Sci. Technol. 34, 3690-3697.CrossRefGoogle Scholar
  9. Ghosh, U., Seb Gillete, J., Luthy, G. R. and Zare, R. N.: 2000, ‘Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles’, Environ. Sci. Technol. 34, 1729-1736.CrossRefGoogle Scholar
  10. Gustafsson, Ö., Bucheli, T. D., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J. N., Reddy, C. M. and Eglinton, T. I.: 2001, ‘Evaluation of a protocol for the quantification of black carbon in sediments’, Global Biogeochem. Cycles 15, 881-890.CrossRefGoogle Scholar
  11. Gustafsson, Ö. and Gschwend, P. M.: 1997, ‘Soot as a strong partition medium for polycyclic aromatic hydrocarbons in aquatic systems’, in Molecular Markers in Environmental Geochemistry,ACS symposium series, Vol. 671, pp. 365-381.CrossRefGoogle Scholar
  12. Gustafsson, Ö. and Gschwend, P. M.: 1998, ‘The flux of black carbon to surface sediments on the New England continental shelf’, Geochim. Cosmochim. Acta 62, 465-472.CrossRefGoogle Scholar
  13. Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J. and Gschwend, P. M.: 1997, ‘Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability’, Environ. Sci. Technol. 31, 203-209.CrossRefGoogle Scholar
  14. Huang, W., Young, T. M., Schlautman, M. A., Yu, H. and Weber, W. J. Jr.: 1997, ‘A dis-tributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinear-ity and applicability of the dual reactive domain model’, Environ. Sci. Technol. 31, 1703-1710.CrossRefGoogle Scholar
  15. International Committee for Coal and Organic Petrology (ICCP): 1971, International Handbook of Coal Petrography, 1st suppl. to 2nd edn., Centre National de la Recherche Scientifique, Paris.Google Scholar
  16. International Committee for Coal and Organic Petrology (ICCP): 1975, International Handbook of Coal Petrography, 2nd suppl. to 2nd edn., Centre National de la Recherche Scientifique, Paris.Google Scholar
  17. International Committee for Coal and Organic Petrology (ICCP): 2001, ‘The New Inertinite Classification (ICCP System 1994)’, Fuel 80, 459-471.CrossRefGoogle Scholar
  18. James, G.: 2001, ‘The Impact of Charcoal Properties on Phenanthrene Sorption’, Master's Thesis, The University of Oklahoma, Norman, OK.Google Scholar
  19. Jones, T., Scott, A. C. and Cope, M.: 1991, ‘Reflectance measurements against temperature of forma-tion for modern charcoals and their implications for the study of fusain’, Bull. Geol. Soc. France 162, 193-200.Google Scholar
  20. Jonker, M. T. O. and Koelmans, A. A.: 2001, ‘Polyoxymethylene solid phase extraction as a parti-tioning method for hydrophobic organic chemicals in sediment and soot’, Environ. Sci. Technol. 35, 3742-3748.CrossRefGoogle Scholar
  21. Jonker, M. T. O. and Smedes, F.: 2000, ‘Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands’, Environ. Sci. Technol. 34, 1620-1626.CrossRefGoogle Scholar
  22. Karapanagioti, H. K.: 2000, ‘Impacts of Heterogeneous Sedimentary Organic Matter on Phenanthrene Sorption and Fate Processes’, Ph.D. Dissertation, The University of Oklahoma, Norman, OK.Google Scholar
  23. Karapanagioti, H. K., Childs, J. and Sabatini, D. A.: 2001, ‘Impacts of heterogeneous organic matter on phenanthrene sorption: different soil and sediment samples’, Environ. Sci. Technol. 35, 4684-4690.CrossRefGoogle Scholar
  24. Karapanagioti, H. K., Kleineidam, S., Ligouis, B., Sabatini, D. A. and Grathwohl, P.: 2000, ‘Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material’, Environ. Sci. Technol. 34, 406-414.CrossRefGoogle Scholar
  25. Karapanagioti, H. K. and Sabatini, D. A.: 2000, ‘Impacts of heterogeneous organic matter on phenan-threne sorption: different aquifer depths’, Environ. Sci. Technol. 34, 2453-2460.CrossRefGoogle Scholar
  26. Karickhoff, S. W., Brown, D. S. and Scott, T. A.: 1979, ‘Sorption of hydrophobic pollutants on natural sediments’, Water Res. 13, 241-248.CrossRefGoogle Scholar
  27. Kleineidam, S., Rügner, H., Ligouis, B. and Grathwohl, P.: 1999, ‘Organic matter facies and equilib-rium sorption of phenanthrene’, Environ. Sci. Technol. 33, 1637-1644.CrossRefGoogle Scholar
  28. Kleineidam, S., Schüth, C. and Grathwohl, P.: 2002, ‘Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants’, Environ. Sci. Technol. 36, 4689-4697.CrossRefGoogle Scholar
  29. Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., Reinhard, M., Traina, S. J., Weber, W. J. Jr. and Westall, J. C.: 1997, ‘Sequestration of hydrophobic organic contaminants by geosorbents’, Environ. Sci. Technol. 31, 3341-3347.CrossRefGoogle Scholar
  30. McGroody, S. E. and Farrington, J. W.: 1995, ‘Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts’, Environ. Sci. Technol. 29, 1542-1550.CrossRefGoogle Scholar
  31. Middelburg, J. J., Nieuwenhuize, J. and van Breugel, P.: 1999, ‘Black carbon in marine sediments’, Marine Chem. 65, 245-252.CrossRefGoogle Scholar
  32. Naes, K., Axelman, J., Näf, C. and Broman, D.: 1998, ‘Role of soot carbon and other carbon matrices in the distribution of PAHs among particles, DOC, and the dissolved phase in the effluent and recipient waters of an aluminum reduction plant’, Environ. Sci. Technol. 32, 1786-1792.CrossRefGoogle Scholar
  33. Nguyen, T. H., Brown, R. A. and Ball, W. P.: 2003, ‘An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment, Organ. Chem. 35, 217-234.Google Scholar
  34. Persson, J., Gustafsson, Ö., Bucheli, T. D., Ishaq, R., Naes, K. and Broman, D.: 2002, ‘Soot-carbon influenced distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway’, Environ. Sci. Technol. 36, 4968-4974.CrossRefGoogle Scholar
  35. Scott, A. C.: 2000, ‘The pre-quaternary history of fire’, Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281-329.CrossRefGoogle Scholar
  36. Tyson, R. V.: 1995, Sedimentary Organic Matter: Organic Facies and Palynofacies, Chapman & Hall, London.Google Scholar
  37. Weber, W. J. Jr.; Huang, W.: 1996, ‘Adistributed reactivity model for sorption by soils and sediments. 4.Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions’, Environ. Sci. Technol. 30, 881-888.CrossRefGoogle Scholar
  38. White, J. C. and Pignatello, J. J.: 1999, ‘Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil’, Environ. Sci. Technol. 33, 4292-4298.CrossRefGoogle Scholar
  39. Xia, G.: 1998, ‘Sorption Behavior of Nonpolar Organic Chemicals on Natural Sorbents’, Ph.D.Dissertation, The Johns Hopkins University, Baltimore, MD.Google Scholar
  40. Xia, G. and Pignatello, J. J.: 2001, ‘Detailed sorption isotherms of polar and apolar compounds in a high-organic soil’, Environ. Sci. Technol. 35, 84-94.CrossRefGoogle Scholar
  41. Xia, G. and Ball, W. P.: 1999, ‘Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent’, Environ. Sci. Technol. 33, 262-269.CrossRefGoogle Scholar
  42. Xia, G. and Ball, W. P.: 2000, ‘Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent’, Environ. Sci. Technol. 34, 1246-1253.CrossRefGoogle Scholar
  43. Xing, B. and Pignatello, J. J.: 1997, ‘Dual-mode sorption of low-polarity compounds in glassy Poly (Vinyl Chloride) and soil organic matter’, Environ. Sci. Technol. 31, 792-799.CrossRefGoogle Scholar
  44. Xing, B., Pignatello, J. J. and Gigliotti, B.: 1996, ‘Competitive sorption between atrazine and other organic compounds in soils and model sorbents’, Environ. Sci. Technol. 30, 2432-2440.CrossRefGoogle Scholar
  45. Young, T. M., Weber, W. J. Jr.: 1995, ‘Adistributed reactivity model for sorption by soils and sediments.3. Effects of diagenetic processes on sorption energetics’, Environ. Sci. Technol. 29, 92-97.CrossRefGoogle Scholar
  46. Zhou, J. L., Fileman, T. W., Evans, S., Donkin, P., Readman, J. W., Mantoura, R. F. C., Rowland, S.: 1999, ‘The partition of fluoranthene and pyrene between suspended particles and dissolved phase in the humber estuary: a study of the controlling factors’, Sci. Tot. Env. 243/244, 305-321.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hrissi K. Karapanagioti
    • 1
  • Gavin James
    • 2
  • David A. Sabatini
    • 2
  • Stavros Kalaitzidis
    • 3
  • Kimon Christanis
    • 3
  • Orjan Gustafsson
    • 4
  1. 1.Department of Marine SciencesUniversity of the AegeanLofos Panepistimiou, MytileneGreece
  2. 2.School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA
  3. 3.Department of GeologyUniversity of PatrasPatrasGreece
  4. 4.Institute for Applied Environmental Research (ITM)Stockholm UniversitySweden

Personalised recommendations