Water, Air and Soil Pollution: Focus

, Volume 4, Issue 4–5, pp 75–85 | Cite as

Monitoring of the Degradation Activities and the Diversity of the Microbial Community Degrading Refinery Waste Sludge

  • Eleftheria Katsivela
  • Edward R. B. Moore
  • Nicolas Kalogerakis


The biodegradation of n-alkanes and branched alkanes from waste sludge were observed in landfarming soils of Motor Oil Hellas (a petroleum refinery) and changes in the bacterial communities in the soils were monitored during the remediation. Bacterial 16S rRNA gene (rDNA)-based community fingerprint patterns were obtained from soil samples by terminal restriction fragment length polymorphism (T-RFLP) analysis. Changes in T-RFLP fingerprints, as well as in the petroleum contaminant composition of the polluted soil, correlated with degradation activities in field tests.

bacterial community biodegradation petroleum hydrocarbons refinery waste sludge 16S rDNA T-RFLP fingerprinting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borneman, J., Skroch, P. W., O'Sullivan, K. M., Palus, J. A., Rumjanek, N. G., Jansen, J. L., Nienhuis, J. and Triplett, E. W.: 1996, ‘Molecular microbial diversity of an agricultural soil in Wisconsin’, Appl. Environ. Microbiol. 62(6), 1935-1943.Google Scholar
  2. Katsivela, E. and Kalogerakis, N.: 2000, ‘Biodegradation of aliphatic petroleum hydrocarbons in refinery waste sludges’, in V. A. Tsihrintzis, G. P. Korfiatis, K. L. Katsifarakis and A. C. Demetracopoulos (eds.), Proceedings of an International Conference “Protection and Restoration of the Environment V”I, V. Bouris Press, Thessaloniki-Kalamaria, Vol. II, pp. 793-799.Google Scholar
  3. Katsivela, E., Moore, E. R. B. and Kalogerakis, N.: 2003, ‘Biodegradation of aliphatic and aromatic hydrocarbons: specificity among bacteria isolated from refinery waste sludge’, Water, Air Soil: Focus 3, 103-115.CrossRefGoogle Scholar
  4. Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J.: 1997, ‘Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA’, Appl. Environ. Microbiol. 63, 4516-4522.Google Scholar
  5. Moore, E. R. B., Mau, M., Arnscheidt, A., Böttger, E. C., Hutson, R. A., Collins, M. D., Van De Peer, Y., De Wachter, R. and Timmis, K. N.: 1996, ‘The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships’, Syst. Appl. Microbiol. 19, 476-492Google Scholar
  6. Moore, E. R. B., Arnscheidt, A., Krüger, A., Strömpl, C., Mau, M.: 1999, ‘Simplified protocols for the preparation of genomic DNA from bacterial cultures’, in A. D. L. Akkermans, J. D. van Elsas and F. J. de Bruijn (eds.), Molecular Microbial Ecology Manual, Kluwer Academic Publisher, 1.6.1, pp. 1-15.Google Scholar
  7. Osborn, M. A., Moore, E. R. B. and Timmis, K. N.: 2000, ‘An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics’, Environ. Microbiol. 2(1), 39-50.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Eleftheria Katsivela
    • 1
    • 2
  • Edward R. B. Moore
    • 3
    • 4
  • Nicolas Kalogerakis
    • 1
  1. 1.Laboratory of Biochemical Engineering & Environmental Biotechnology, Department of Environmental EngineeringTechnical University of Crete, PolytechneioupolisChaniaGreece
  2. 2.Department of Natural Resources and EnvironmentTechnological Educational Institute of CreteChania, CreteGreece
  3. 3.The Soil Health Initiative, Department of Soil Quality and ProtectionMacaulay Land Use Research InstituteAberdeen, ScotlandU.K
  4. 4.Division of MicrobiologyNational Research Centre for Biotechnology (GBF)BraunschweigGermany

Personalised recommendations