Water, Air and Soil Pollution: Focus

, Volume 4, Issue 2–3, pp 517–529 | Cite as

The Missing Flux in a 35S Budget for the Soils of a Small Polluted Catchment

  • Martin Novák
  • Robert L. Michel
  • Eva Přechová
  • Markéta Štěpánová

Abstract

A combination of cosmogenic and artificial 35S was used to assess the movement of sulfur in a steep Central European catchment affected by spruce die-back. The Jezeří catchment, Krušné Hory Mts. (Czech Republic) is characterized by a large disproportion between atmospheric S input and S output via stream discharge, with S output currently exceeding S input three times. A relatively high natural concentration of cosmogenic 35S (42 mBq L-1) was found in atmospheric deposition into the catchment in winter and spring of 2000. In contrast, stream discharge contained only 2 mBq L-1. Consequently, more than 95% of the deposited S is cycled or retained within the catchment for more than several months, while older S is exported via surface water. In spring, when the soil temperature is above 0 °C, practically no S from instantaneous rainfall is exported, despite the steepness of the slopes and the relatively short mean residence time of water in the catchment (6.5 months). Sulfur cycling in the soil includes not just adsorption of inorganic sulfate and biological uptake, but also volatilization of S compounds back into the atmosphere. Laboratory incubations of an Orthic Podzol from Jezeří spiked with 720 kBq of artificial 35S showed a 20% loss of the spike within 18 weeks under summer conditions. Under winter conditions, the 35S loss was insignificant (<5%). This missing S flux was interpreted as volatilized hydrogen sulfide resulting from intermittent dissimilatory bacterial sulfate reduction. The missing S flux is comparable to the estimated uncertainty in many catchment S mass balances (±10%), or even larger, and should be considered in constructing these mass balances. In severely polluted forest catchments, such as Jezeří, sulfur loss to volatilization may exceed 13 kg ha-1 a-1, which is more than the current total atmospheric S input in large parts of North America and Europe.

catchment cosmogenic 35gaseous S~loss sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alewell, C. and Novák, M.: 2001, ‘Spotting zones of dissimilatory sulfate reduction in a forested catchment: The 34S-35S approach’, Environ. Pollut. 112, 369-377.Google Scholar
  2. Buzek, F., Hanzlík, J., Hrubý, M. and Tryzna, P.: 1991, ‘Evaluation of the runoff components on the slope of an open-cast mine by means of environmental isotopes 18O and T’, J. Hydrol. 127, 23-36.Google Scholar
  3. Chakrabarti, J. N.: 1978, ‘Analytical procedures for sulfur in coal desulfurization products’, In C. Karr Jr. (ed.), Analytical Methods for Coal and Coal Products, Academic Press, New York, pp. 279-323.Google Scholar
  4. Chapman, S. J., Kanda, K., Tsuruta, H. and Minami, K.: 1996, ‘Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands: A comparison of peat and paddy soils’, Soil Sci. Plant Nutr. 42, 269-277.Google Scholar
  5. Eimers, M. C. and Dillon, P. J.: 2002, ‘Climate effects on sulphate flux from forested catchments in south-central Ontario’, Biogeochemistry 61, 337-355.Google Scholar
  6. Giesemann, A., Jäger, H. J. and Feger, K. H.: 1995, ‘Evaluation of sulphur cycling in managed forest stands by means of stable S-isotope analysis’, Plant Soil 168-169, 399-404.Google Scholar
  7. Groscheová, H., Novák, M. and Alewell, C.: 2000, ‘Changes in the d 34S ratio of pore-water sulfate in incubated Sphagnumpeat’, Wetlands 20, 62-69.Google Scholar
  8. Groscheová, H., Novák, M., Havel, M. and Černý, J.: 1998, ‘Effect of altitude and tree species on d 34S of deposited sulfur (Jezeří Catchment, Czech Republic)’, Water, Air, Soil Pollut. 105, 295-303.Google Scholar
  9. Houle, D., Carignan, R. and Ouimet, R.: 2001,‘Soil organic sulfur dynamics in a coniferous forest’, Biogeochemistry 53, 105-124.Google Scholar
  10. Jenkins, A., Ferrier, R. C. and Wright, R. F.: 2001, ‘Assessment of recovery of European surface waters from acidification 1970-2000’, Hydrol. Earth Syst. Sci. 5, 273-542.Google Scholar
  11. Krouse, H. R. and Grinenko, V. A.: 1991, Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment, SCOPE 43, John Wiley & Sons, New York, pp. 466.Google Scholar
  12. Lal, D. and Peters, B.: 1966, Cosmic Ray Produced Radioactivity on the Earth, Handbuch der Physik, Springer-Verlag, New York, U.S.A., pp. 550-612.Google Scholar
  13. Likens, G. E., Driscoll, C. T., Buso, D. C., Mitchell, M. J., Lovett, G. M., Bailey, S. W., Siccama, T. G., Reiners, W. A. and Alewell, C.: 2002, ‘The biogeochemistry of sulfur at Hubbard Brook’, Biogeochemistry 60, 235-316.Google Scholar
  14. Mayer, B., Feger, K. H., Giesemann, A. and Jäger, H. J.: 1995, ‘Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data’, Biogeochemistry 30, 31-58.Google Scholar
  15. Michel, R. L., Campbell, D., Clow, D. and Turk, J. T.: 2000, ‘Timescales for migration of atmospherically derived sulphate through an alpine/subalpine watershed, Loch Vale, Colorado’, Water Resour. Res. 36, 27-36.Google Scholar
  16. Michel, R. L., Turk, J. T., Campbell, D. H. and Mast, M. A.: 2002, ‘Use of natural 35S to trace sulphate cycling in small lakes, Flattops Wilderness Area, Colorado, U.S.A.’, Water, Air, Soil Pollut.: Focus 2, 5-18.Google Scholar
  17. Mitchell, M. J. and Fuller, R. D.: 1988, ‘Models of sulfur dynamics in forest and grassland ecosystems with an emphasis on soil processes’, Biogeochemistry 5, 133-164.Google Scholar
  18. Novák, M., Wieder, R. K. and Schell, W. R.: 1994, ‘Sulfur during early diagenesis in Sphagnumpeat: Insights from d 34S ratio profiles in 210Pb-dated peat cores’, Limnol. Oceanogr. 39, 1172-1185.Google Scholar
  19. Novák, M. and Přechová, E.: 1995, ‘Movement and transformation of 35S-labelled sulphate in the soil of a heavily polluted site in the Northern Czech Republic’, Environ. Geochem. Health 17, 83-94.Google Scholar
  20. Novák, M., Bottrell, S. H., Groscheová, H., Buzek, F. and Černý, J.: 1995, ‘Sulphur isotope characteristics of two North Bohemian forest catchments’, Water, Air, Soil Pollut. 85, 1641-1646.Google Scholar
  21. Novák, M., Bottrell, S. H., Fottová, D., Buzek, F., Groscheová, H. and Žák, K.: 1996, ‘Sulfur isotope signals in forest soils of Central Europe along an air pollution gradient’, Environ. Sci. Technol. 30, 3473-3476.Google Scholar
  22. Novák. M., Kirchner, J. W., Groscheová, H., Havel, M., Černý, J., Krejčí, R. and Buzek, F.: 2000, ‘Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx’, Geochim. Cosmochim. Acta 64, 367-383.Google Scholar
  23. Novák, M., Jačková, I. and Přechová, E.: 2001, ‘Temporal trends in the isotope signature of air-borne sulfur in Central Europe’, Environ. Sci. Technol. 35, 255-260.Google Scholar
  24. Novák, M., Buzek, F., Harrison, A. F., Přechová, E., Jačková, I. and Fottová, D.: 2003, ‘Similarity between C, N and S stable isotope profiles in European spruce forest soils: Implications for the use of d 34S as a tracer’, Appl. Geochem. 18, 765-779.Google Scholar
  25. Nriagu, J. O., Holdway, D. A. and Coker, R. D.: 1987, ‘Biogenic sulfur and the acidity of rainfall in remote areas of Canada’, Science 237, 1189-1192.Google Scholar
  26. Peters, N. E., Černý, J., Havel, M. and Krejčí, R.: 1999, ‘Temporal trends of bulk precipitation and water chemistry (1977-1997) in a small forested area, Krusné hory, northern Bohemia, Czech Republic’, Hydrol. Process. 13, 2721-2741.Google Scholar
  27. Sall, J. and Lehman, A.: 1996, JMP Start Statistics, Duxbury Press, New York, pp. 656.Google Scholar
  28. Siegenthaler, U.: 1971, ‘Sauerstoff-18, Deuterium und Tritium im Wasserkreislauf’, unpublished Ph.D. Dissertation, University of Bern, Switzerland.Google Scholar
  29. Strickland, T. C. and Fitzgerald, J.W.: 1984, ‘Formation and mineralization of organic sulfur in forest soils’, Biogeochem. 1, 79-95.Google Scholar
  30. Sueker, J. K., Turk, J. T. and Michel, R. L.: 1999, ‘Use of cosmogenic S-35 for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range’, Geomorphology 27, 61.Google Scholar
  31. Sumner, E.: 2000, Handbook of Soil Science, CRC Press, Boca Raton, pp. 2148.Google Scholar
  32. Watwood, M. E. and Fitzgerald, J. W.: 1988, ‘Sulfur transformations in forest litter and soil-results of laboratory and field incubations’, Soil Sci. Soc. Am. J. 52, 1478-1483.Google Scholar
  33. Wieder, R. K. and Lang, G. E.: 1988, ‘Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia’, Biogeochemistry 5, 221.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Martin Novák
    • 1
  • Robert L. Michel
    • 2
  • Eva Přechová
    • 1
  • Markéta Štěpánová
    • 1
  1. 1.Czech Geological SurveyPrague 5Czech Republic
  2. 2.U.S. Geological SurveyMenlo ParkU.S.A

Personalised recommendations