Water, Air and Soil Pollution: Focus

, Volume 4, Issue 2–3, pp 469–482 | Cite as

Radiogenic Lead Isotopes and Time Stratigraphy in the Hudson River, New York

  • Steven N. Chillrud
  • Richard F. Bopp
  • James M. Ross
  • Damon A. Chaky
  • Sidney Hemming
  • Edward L. Shuster
  • H. James Simpson
  • Frank Estabrooks

Abstract

Radionuclide, radiogenic lead isotope and trace metal analyses on fine-grained sediment cores collected along 160 km of the upper and tidal Hudson River were used to examine temporal trends of contaminant loadings and to develop radiogenic lead isotopes both as a stratigraphic tool and as tracers for resolving decadal particle transport fluxes. Very large inputs of Cd, Sb, Pb, and Cr are evident in the sediment record, potentially from a single manufacturing facility. The total range in radiogenic lead isotope ratios observed in well-dated cores collected about 24 km downstream of the plant is large (e.g., maximum difference in 206Pb/207Pb is 10%), characterized by four major shifts occurring in the 1950s, 1960s, 1970s and 1980s. The upper Hudson signals in Cd and radiogenic lead isotopes were still evident in sediments collected 160 km downstream in the tidal Hudson. The large magnitude and abrupt shifts in radiogenic lead isotope ratios as a function of depth provide sensitive temporal constraints that complement information derived from radionuclide analyses to significantly improve the precision of dating assignments. Application of a simple dilution model to data from paired cores suggests much larger sediment inputs in one section of the river than previously reported, suggesting particle influxes to the Hudson have been underestimated.

contaminant transport Hudson River sediments metals radionuclides stable lead isotopes stratigraphy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P. G. and Oldfield, F.: 1992, ‘Application of 210Pb to sedimentation studies’, in M Ivanovich and R. S. Harmon (eds), Uranium Series Disequilibrium, Oxford University Press. Oxford, pp. 731-778.Google Scholar
  2. Beasley, T. M., Jennings, C. D. and McCullough, D. A.: 1986, ‘Sediment accumulation rates in the lower Columbia River’, J. Environ. Radioact. 3, 103-123.Google Scholar
  3. Bock, B., Mclennan, S. M. and Hansonm G. N.: 1998, ‘Geochemistry and provenance of the Middle Ordovician Austin Glen member (Normanskill Formation) and the Taconian Orogeny in New England’, Sedimentology 45, 635-655.Google Scholar
  4. Bopp, R. F., Simpson, H. J., Olsen, C. R. and Kostyk, N.: 1981, ‘Polychlorinated biphenyls in sediments of the tidal Hudson River, New York’, Environ. Sci. Technol. 15, 210-216.Google Scholar
  5. Bopp, R. F., Simpson, H. J., Trier, R. M. and Kostyk, N.: 1982, ‘Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and estuary, New York’, Environ. Sci. Technol. 16, 666-676.Google Scholar
  6. Bopp, R. F., Simpson, H. J. and Deck, B. L.: 1985, ‘Release of polychlornated biphenyls from contaminated Hudson River sediments’, Final Report prepared for the New York State Department of Environmental Conservation, contract NYS C00708.Google Scholar
  7. Bopp, R. F. and Simpson, H. J: 1989, ‘Contamination of the Hudson River: The sediment record’, in Contaminated Marine Sediments - Assessment and Remediation, National Academy Press, Washington, DC., pp. 401-416.Google Scholar
  8. Bopp, R. F., Simpson, H. J., Chillrud, S. N. and Robinson, D. W.: 1993, ‘Sediment-derived chronologies of persistent contaminants in Jamaica Bay, NY’, Estuaries 16, 608-616.Google Scholar
  9. Bopp, R. F., Chillrud, S. N., Shuster, E. L., Simpson, H. J. and Estabrooks, F. D.: 1998, ‘Trends in chlorinated hydrocarbon levels in Hudson River basin sediments: Integrated approaches for studying hazardous substances’, Environ. Health Perspect. 106, Suppl. 4, 1075-1079.Google Scholar
  10. Bopp, R. F., Chillrud, S. N., Shuster, E. L. and Simpson, H. J.: ‘Contaminant chronologies’, in The Hudson River Estuary, J. Levinton and J. Waldman (eds), Oxford University Press, in press.Google Scholar
  11. Bush, B., Shane, L. A., Whalen, M. and Brown, M. P.: 1987, ‘Sedimentation of 74 PCB congeners in the Upper Hudson River’, Chemosphere 16, 733-744.Google Scholar
  12. Chillrud, S. N.: 1996, ‘Transport and fate of particle-associated contaminants in the Hudson River Basin’, Ph. D. Thesis, Columbia University, New York. 277 pp.Google Scholar
  13. Chillrud, S. N., Hemming, S., Shuster, E. L., Simpson, H. J., Bopp, R. F. Ross, J. M., Pederson, D. C., Chaky, D., Tolley, L-R. and Estabrooks, F.: 2003, ‘Stable lead isotopes, contaminant metals and radionuclides in upper Hudson River sediment cores: Implications for improved stratigraphy and transport processes’, Chemical Geology 199, 53-70.Google Scholar
  14. Crusius, J. and Anderson, R. F.: 1991, ‘Core compression and surficial sediment loss of lake sediments of high porosity caused by gravity coring’, Limnol. Oceanogr. 36, 1021-1030.Google Scholar
  15. Deloule, E., Allegre, C. and Doe, B. R.: 1986, ‘Lead and sulfur isotope microstratigraphy in galena crystals from Mississippi Valley-type deposit’, Econ. Geol. 81, 1307-1321.Google Scholar
  16. Doe, B. R.: 1975, ‘Lead Isotope Data Bank: 2624 Samples and Analyses Cited’, USGS Open File Report 76-201, 104 pp.Google Scholar
  17. Doe, B. R. and Delavaux, M. H.: 1972, ‘Source of lead in southeast Missouri galena ores’, Econ. Geol. 67, 409-425.Google Scholar
  18. Fleisher, M. Q. and Anderson, R.: 1991, ‘Particulate matter digestion (from mg to 10’s of g) and radionuclide blanks’, in D. C. Hurd and D. W. Spencer (eds), Marine Particlse: Analysis and Characterization, Geophysical Monograph 63, American Geophysical Union, Washington, DC. pp 221-222.Google Scholar
  19. Graney, J. R., Halliday, A. N., Keeler, G. J., Nriagu, J. O., Robbins, J. A. and Norton, S. A.: 1995, ‘Isotopic record of lead pollution in lake sediments from the northeastern United States’, Geochim. Cosmochim. Acta 59, 1715-1728.Google Scholar
  20. Hurst, R.W., Davis, T. E. and Chinn, B. D.: 1996, ‘The lead fingerprints of gasoline contamination’, Environ. Sci. Technol. 30, 304-307.Google Scholar
  21. Marcantonio, F., Zimmerman, A. Xu, Y. and Canuel, E.: 2002, ‘A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments’, Mar. Chem. 77, 123-132.Google Scholar
  22. Marowsky, G. and Wedepohl, K. H.: 1971, ‘General trends in the behavior of Cd, Hg, Tl, and Bi in some major rock forming processes’, Geochim. Cosmochim. Acta 35, 1255-1267.Google Scholar
  23. McGraw Hill Encyclopedia of Science and Technology: 1997, 8th Edition, New York. 1: 788.Google Scholar
  24. McNulty, A. K.: 1997, ‘In-situ anaerobic dechlorination of polycholorinated biphenyls in Hudson River sediments’, M. S. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 334 pp.Google Scholar
  25. Olsen, C. R.: 1979, ‘Radionuclides, sedimentation and the accumulation of pollutants in the Hudson Estuary’, Ph. D thesis, Columbia University, New York, New York, 343 pp.Google Scholar
  26. Olsen, C. R., Simpson, H. J., Peng, T.-H., Bopp, R. F. and Trier, R. M.: 1981a, ‘Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson Estuary sediments’, J. Geophys. Res. 86(C11), 11020-11028.Google Scholar
  27. Olsen, C. R., Simpson, H. J. and Trier, R. M.: 1981b, ‘Plutonium, radiocesium and radiocobalt in sediments of the Hudson River estuary’, Earth Planet. Sci. Lett. 55, 371-392.Google Scholar
  28. Ritchie, J. C. and McHenry, J. R.: 1990, ‘Application of radioactive fallout Cesium-137 formeasuring soil erosion and sediment accumulation rates and patterns: A review’, J. Environ. Qual. 19, 215- 233.Google Scholar
  29. Rohmann, S. O., Miller, R. L., Scott, E. A. and Muir, W. R.: 1985, Tracing a River’s Toxic Pollution, A Case Study of the Hudson, A.S. McCook (ed.), INFORM Inc., New York.Google Scholar
  30. Scott, M. R., Rotter, R. J. and Salter, P. R.: 1985, ‘Transport of fallout plutonium to the ocean by the Mississippi River’, Earth Planet. Sci. Lett. 75, 321-326.Google Scholar
  31. Shen, G. and Boyle, E.: 1987, ‘Lead in corals: reconstruction of historic industrial fluxes to the surface ocean’, Earth Planet. Sci. Lett. 326, 278-280.Google Scholar
  32. Shuster, E., Bopp, R. F., and Zamek E.: 2002, ‘Trace metal and dioxin analyses of dated sediment samples from the upper Hudson River’, Report to NYS Department of Environmental Conservation, Contract Number C003844.Google Scholar
  33. Simpson, H. J., Olsen, C. R., Williams, S. C. and Trier, R. M.: 1976, ‘Man-made radionuclides and sedimentation in the Hudson River estuary’, Science 194, 179-183.Google Scholar
  34. Sturges, W. T. and Barrie, L. A.: 1987, ‘Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions’, Nature 329: 144-146.Google Scholar
  35. Turekian, KK. and Wedepohl, K. H.: 1961, ‘Distribution of elements in the earth’s crust’, Geol. Soc. Am. Bull. 72, 174-192.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Steven N. Chillrud
    • 1
  • Richard F. Bopp
    • 2
  • James M. Ross
    • 1
  • Damon A. Chaky
    • 1
  • Sidney Hemming
    • 1
  • Edward L. Shuster
    • 2
  • H. James Simpson
    • 1
  • Frank Estabrooks
    • 3
  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesU.S.A.
  2. 2.Earth and Environmental SciencesRensselaer Polytechnic InstituteTroyU.S.A
  3. 3.New York State Department of Environmental ConservationAlbanyU.S.A

Personalised recommendations