Advertisement

A Low Power Architecture for HASM Motion Tracking

  • Wael Badawy
  • Magdy Bayoumi
Article

Abstract

This paper proposes low power VLSI architecture for motion tracking that can be used in online video applications such as in MPEG and VRML. The proposed architecture uses a hierarchical adaptive structured mesh (HASM) concept that generates a content-based video representation. The developed architecture shows the significant reducing of power consumption that is inherited in the HASM concept. The proposed architecture consists of two units: a motion estimation and motion compensation units.

The motion estimation (ME) architecture generates a progressive mesh code that represents a mesh topology and its motion vectors. ME reduces the power consumption since it (1) implements a successive splitting strategy to generate the mesh topology. The successive split allows the pipelined implementation of the processing elements. (2) It approximates the mesh nodes motion vector by using the three step search algorithm. (3) and it uses parallel units that reduce the power consumption at a fixed throughput.

The motion compensation (MC) architecture processes a reference frame, mesh nodes and motion vectors to predict a video frame using affine transformation to warp the texture with different mesh patches. The MC reduces the power consumption since it uses (1) a multiplication-free algorithm for affine transformation. (2) It uses parallel threads in which each thread implements a pipelined chain of scalable affine units to compute the affine transformation of each patch.

The architecture has been prototyped using top-down low-power design methodology. The performance of the architecture has been analyzed in terms of video construction quality, power and delay.

low power architecture motion tracking mesh affine transformation video 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Nosratinia, “New Kernels for Fast Mesh-Based Motion Estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 1, 2001, pp. 40-52.CrossRefGoogle Scholar
  2. 2.
    R.M. Haralick, “Automatic Remote Sensor Image Processing,” in Topics in Applied Physics, vol. 11: Digital Picture Analysis. New York: Springer-Verlag, 1976, pp. 5-63.CrossRefGoogle Scholar
  3. 3.
    G.J. Holzmann, Beyond Photography—The Digital Dark-Room. Englewood Cliffs, NJ: Prentice-Hall, 1988.Google Scholar
  4. 4.
    G. Wolberg, Digital Image Warping. Los Almitos, CA: IEEE Computer Society Press, 1990.Google Scholar
  5. 5.
    H. Bruzewitz, “Motion Compensation with Triangles,” in Proc. 3rd Int. Conf. 64 kbit Coding of Moving Video, Rootterdam, The Netherlands, Sept. 1990.Google Scholar
  6. 6.
    G.J. Sullivan and R.L. Baker, “Motion Compensation for Video Compression Using Control Grid Interpolation,” in Proc. IEEE ICASSP, vol. 4, May 1991, pp. 2713-2716.Google Scholar
  7. 7.
    Y. Nakaya and H. Harashima, “An Iterative Motion Estimation Method using Triangular Patches for Motion Compensation,” in Proc. SPIE Visual Communications and Image Processing, vol. 1605, Nov. 1991, pp. 546-557.Google Scholar
  8. 8.
    Y. Nakaya and H. Harashima, “Motion Compensation Based on Spatial Transformations,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, 1994, pp. 339-356.CrossRefGoogle Scholar
  9. 9.
    J. Nieweglowski, T. Campbell, and P. Haavisto, “A Novel Video Coding Scheme Based on Temporal Prediction Using Digital Image Warping,” IEEE Trans. Consumer Electron., vol. 39, 1993, pp. 141-150.CrossRefGoogle Scholar
  10. 10.
    C.L. Huang and C.Y. Hsu, “A New Motion Compensation Method for Image Sequence Coding Using Hierarchical Grid Interpolation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, 1994, pp. 42-52.CrossRefGoogle Scholar
  11. 11.
    Y. Wang and O. Lee, “Active Mesh—A Feature Seeking and Tracking Image Sequence Representation Scheme,” IEEE Trans. Image Processing, vol. 3, 1994, pp. 610-624.CrossRefGoogle Scholar
  12. 12.
    Y. Wang and O. Lee, “Use of Two-Dimensional Deformable Mesh Structures for Video Coding, Part I—The Synthesis Problem: Mesh-Based Function Approximation and Mapping,” IEEE Tran. Circuits Syst. Video Technol., vol. 6, 1996, pp. 636-646.CrossRefGoogle Scholar
  13. 13.
    Y. Wang, O. Lee, and A. Vetro, “Use of Two-Dimensional Deformable Mesh Structures for Video Coding, Part II—The Analysis Problem and a Region-Based Coder Employing an Active Mesh Representation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, 1996, pp. 647-659.CrossRefGoogle Scholar
  14. 14.
    Y. Wang and J. Osterman, “Evaluation of Mesh-Based Motion Estimation in h.263 like Coders,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, 1998, pp. 243-252.CrossRefGoogle Scholar
  15. 15.
    A.M. Tekalp, P.J.L. van Beek, C. Toklu, and B. Gunsel, “2d Mesh-Based Visual Object Representation for Interactive Synthetic/Natural Video,” Proc. IEEE, vol. 86, 1998, pp. 1029-1051.CrossRefGoogle Scholar
  16. 16.
    C. Toklu, A. Erdem, M.I. Sezan, and A.M. Tekalp, “Tracking Motion and Intensity Variations Using Heirarchical 2d Mesh Modeling for Synthetic Object Transfiguration,” Graphic Models and Image Processing, vol. 58, 1996, pp. 553-573.CrossRefGoogle Scholar
  17. 17.
    A. Nosratinia, N. Mohsenian, M.T. Orchard, and B. Liu, “Interslice Coding of Magnetic Resonance Images Using Deformable Triangular Patches,” in Proc. IEEE ICIP, Austin, TX, Nov. 1994, vol. 2, pp. 898-892.Google Scholar
  18. 18.
    A. Nosratinia, N. Mohsenian, M.T. Orchard, and B. Liu, “Interframe Coding of Magnetic Resonance Images,” IEEE Trans. Medical Imaging, vol. 15, 1996, pp. 639-647.CrossRefGoogle Scholar
  19. 19.
    N. Mohsenian, A. Nosratinia, B. Liu, and M.T. Orchard, “Adaptive Entropy Constrained Transform Coding of Maggetic Resonance Image Sequences,” IEEE Trans. Nuclear Sci., vol. 42, 1995, pp. 2309-2316.CrossRefGoogle Scholar
  20. 20.
    O. Lee and Y. Wang, “Non-Uniform Image Sampling and Interpolation Over Deformed and Its Hierarchical Extension,” International Conference on Visual Communications and Image Processing, vol. 3, 1995, pp. 289-300.Google Scholar
  21. 21.
    W. Badawy and M. Bayoumi, “On Minimizing Hierarchical Mesh Coding Overhead: (HASM) Hierarchical Adaptive Structured Mesh Approach”, in IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, Istanbul, Turkey, June 5–9, 2000, pp. 1923-1926.Google Scholar
  22. 22.
    D. Terzopoulos and M. Vailescu, “Sampling and Reconstruction using Adaptive Meshes,” IEEE International Conference on Computer Vision and Pattern Recognition CVPR'91, 1991, pp. 70-75.Google Scholar
  23. 23.
    K.J.R. Liu et al., “Algorithm-Based Low Power and High-Performance Multimedia Signal Processing,” Proc. of IEEE, vol. 86, no. 6, 1998, pp. 1155-1202.CrossRefGoogle Scholar
  24. 24.
    F. Rocca and S. Zanoletti, “Bandwidth Reduction via Movement Compensation on a Model of the Random Video Process,” IEEE trans. Comm. vol. Com 20. 1972, pp. 960-965.CrossRefGoogle Scholar
  25. 25.
    S. Brofferio and F. Rocca, “Interframe Redundancy Reduction of Video Signals Generated by Translating Objects,” IEEE Trans. Commun. vol. Com-25, April 1977, p. 448055.Google Scholar
  26. 26.
    S.A. Khan and V.K. Madisetti, “System Partitioning of MCM for Low Power,” IEEE Design Test Comput. Mug., vol. 12, Spring 1995, pp. 41-52CrossRefGoogle Scholar
  27. 27.
    A.P. Chandrakasan and R.W. Brodersen, “Minimizing Power Consumption in Digital CMOS Circuits,” in Proc. IEEE, vol. 83, 1995, pp. 498-523.CrossRefGoogle Scholar
  28. 28.
    H.K. Thapar and J. Cioffi, “A Block Processing Method for Designing High Speed Viterbi Decoders,” in Proc. IEEE Communications Conf., June 1989, pp. 1096-1100.Google Scholar
  29. 29.
    A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital Design,” in IEEE J. Solid-State Circuits, vol. 27, 1992, pp. 473-484.CrossRefGoogle Scholar
  30. 30.
    T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-Compensated Interframe Coding for Video Conferencing,” in Proc. National Telecommun. Conf., New Orleans, LA, 1981, pp. G.5.3.1-G.5.3.5.Google Scholar
  31. 31.
    J.R. Jam and A.K. Jam, “Displacement Measurement and its Application in Interframe Image Coding,” in IEEE Trans. Commun. vol. COM-29, 1981, pp. 1799-1808.Google Scholar
  32. 32.
    T.H. Meng, R. Broderson, and D. Messerschmitt, “Asynchronous Design for Programmable Digital Signal Processors,” in IEEE Trans. Signal Processing. vol. 39. 1991, pp. 939-952.CrossRefGoogle Scholar
  33. 33.
    K.I.R. Liu, S.-F. Hsieh, and K. Yao, “Systolic Block Householder Transformation for RLS Algorithm with Two-level Pipelined Implementation,” in IEEE Trans. Acoust., Speech. Signal Processing, vol. 40, 1992, pp. 946-958.CrossRefGoogle Scholar
  34. 34.
    C.L. Wang, “Bit-Serial VLSI Implementation of Delayed LMS Adaptive FIR Filter,” in IEEE Trans. Signal Processing, vol. 42, 1994, pp. 2169-2175.CrossRefGoogle Scholar
  35. 35.
    A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.zbMATHGoogle Scholar
  36. 36.
    P.E. Eren, C. Toklu, and A.M. Tekalp, “Object-Based Manipulation and Composition Using 2D Meshes in VRML,” in Proc. IEEE Signal Processing 1st Workshop Multimedia Processing, Princeton, NJ, June 1997, pp. 257-261.Google Scholar
  37. 37.
    G. Wolberg, Digital Image Warping. Los Alamitos, CA: Computer Society Press, 1990.Google Scholar
  38. 38.
    G. Seetharaman, “Image Sequence Analysis for Three-Dimensional Perception of Dynamic Scenes,” in Handbook of Pattern Recognition and Image Processing: Computer Vision, T.Y. Young (Ed.), Academic Press, 1994, pp. 361-403.Google Scholar
  39. 39.
    S. Gunasekaran and T.Y. Young, “A Region Correspondence Approach to the Recovery of 3-Dimensional Motion and Structure in Dynamic Scenes,” in Image Understanding in Unstructured Environment, S.-S. Chen (Ed.), World Scientific, 1988, pp. 75-123.Google Scholar
  40. 40.
    L. Chiariglione, “MPEG and Multimedia Communications,” in IEEE Trans. Circuits Syst. Video Technol., vol. 7, 1997.Google Scholar
  41. 41.
    H. Ghravi and M. Mile, “Block Matching Motion Estimation Algorithms: New Results,” in IEEE Trans. Circ. and Syst., vol. 37, 1990, pp. 649-651.CrossRefGoogle Scholar
  42. 42.
    H. Benoit-Cattin, A.C. Planat, P.R. Joachimsmann, A. Baskurt, P. Clarysse, and I.E. Magnin, “On Minimizing the Active Mesh Coding,” in IEEE International Conference on Image Processing, 1998, pp. 895-898.Google Scholar
  43. 43.
    S.K. Rao, M. Hatamian, M.T. Uyttendaele, S. Narayan, J.H. O'Neill, and G.A. Uvieghara, “A Versatile and Powerful Chip for Real Time Motion Estimation,” in Proc. IEEE ISSCC, 1993, pp. 32-33.Google Scholar
  44. 44.
    K. Ishihara, S. Masuda, S. Hattori, H. Nishikawa, Y. Ajioka, T. Yamada, H. Amishiro, S. Uramoto, M. Yoshimoto, and T. Sumi, “A Half-Pel Precision mpeg2 Motion-Estimation Processor with Concurrent Three-Vector Search,” in IEEE Solid-State Circuits, vol. 30, 1995, pp. 1502-1509.CrossRefGoogle Scholar
  45. 45.
    A. Ohtani, Y. Matsumoto, M. Gion, H. Yoshida, T. Araki, A. Ubukata, M. Serizawa, K. Aoki, A. Sota, A. Nagata, and K. Aono, “A Motion Estimation Processor for mpeg2 Video Real Time Encoding at Wide Search Range,” in Proc. IEEE CICC, 1995, pp. 405-408.Google Scholar
  46. 46.
    J.F. Shen and L.G. Chen, “Low Power Full-Search Block-Matching Motion Estimation Chip for h.263+,” in Proc. IEEE Circuits and Systems, vol. 4, 1999, pp. 299-302.Google Scholar
  47. 47.
    K.J.R. Liu et al., “Algorithm-Based Low Power and High-Performance Multimedia Signal Processing,” in Proc. of IEEE, vol. 86, no. 6, 1998, pp. 1155-1202.CrossRefGoogle Scholar
  48. 48.
    W. Badawy and M. Bayoumi, “Algorithm-Based Low Power VLSI Architecture for 2d-Mesh Video Object Motion Tracking,” The IEEE Transaction on Circuits and Systems for Video Technology, vol. 12, no. 4, 2002, pp. 227-237.CrossRefGoogle Scholar
  49. 49.
    G. Wolberg, Digital Image Warping. Los Alamatos, CA: Computer Society Press, 1990.Google Scholar
  50. 50.
    W. Badawy and M. Bayoumi, “A Low Power VLSI Architecture for Mesh-Based Video Motion Tracking,” The IEEE Transactions on Circuits and Systems II, vol. 49, 2002, pp. 488-504.CrossRefGoogle Scholar
  51. 51.
    P.J.L. van Beek, A.M. Tekalp, and A. Puri, “2D Mesh Geometry and Motion Compression for Efficient Object-Based Video Representation,” Int. Conf. on Image Processing'97, Santa Barbara, CA, Oct. 1997.Google Scholar
  52. 52.
    G. Fujita, T. Onoye, and I. Shirakawa, “A New Motion Estimation Core Dedicated to h.263 Video Coding,” in Proc. IEEE Circuits and Systems, vol. 2, 1997, pp. 1161-1164.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Wael Badawy
    • 1
  • Magdy Bayoumi
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.The Center for Advanced Computer StudiesUniversity of LouisianaLafayetteUSA

Personalised recommendations