International Journal of Computer Vision

, Volume 60, Issue 3, pp 203–224 | Cite as

Area-Based Medial Axis of Planar Curves

  • Marc Niethammer
  • Santiago Betelu
  • Guillermo Sapiro
  • Allen Tannenbaum
  • Peter J. Giblin
Article

Abstract

A new definition of affine invariant medial axis of planar closed curves is introduced. A point belongs to the affine medial axis if and only if it is equidistant from at least two points of the curve, with the distance being a minimum and given by the areas between the curve and its corresponding chords. The medial axis is robust, eliminating the need for curve denoising. In a dynamical interpretation of this affine medial axis, the medial axis points are the affine shock positions of the affine erosion of the curve. We propose a simple method to compute the medial axis and give examples. We also demonstrate how to use this method to detect affine skew symmetry in real images.

medial axis affine invariant symmetry area shape pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. August, J., Tannenbaum, A., and Zucker, S.W. 1999. On the evolution of the skeleton. In Proceedings of the International Conference on Computer Vision, IEEE, vol. 1, pp. 315–322.Google Scholar
  2. Betelu, S., Sapiro, G., and Tannenbaum, A. 2001a. Affine invariant erosion of 3D shapes. In Proceedings of the International Conference on Computer Vision, IEEE, vol. 2, pp. 174–180.CrossRefGoogle Scholar
  3. Betelu, S., Sapiro, G., Tannenbaum, A., and Giblin, P. 2001b. On the computation of affine skeletons of planar curves and the detection of skew symmetry. Pattern Recognition, 34:943–952.CrossRefGoogle Scholar
  4. Blum, H. 1967. Models for the Perception of Speech and Visual Form, chapter A Transformation for Extracting New Descriptors of Shape, MIT Press, pp. 362–380.Google Scholar
  5. Blum, H. 1973. Biological shape and visual science. Journal of Theoretical Biology, 38:205–287.Google Scholar
  6. Brady, J.M. and Asada, H. 1984. Smoothed local symmetries and their implementation. International Journal of Robotics Research, 3:36–61.Google Scholar
  7. Brooks, R.A. 1981. Symbolic reasoning among 3D models and 2D images. Artifical Intelligence, 17:285–348.Google Scholar
  8. Bruce, J.W. and Giblin, P.J. 1986. Growth, motion and one-parameter families of symmetry sets. In Proceedings of the Royal Society of Edinburgh, vol. 104A, pp. 179–204.Google Scholar
  9. Bruce, J.W. and Giblin, P.J. 1992. Curves and Singularities. 2nd edition. Cambridge University Press.Google Scholar
  10. Bruce, J.W., Giblin, P.J., and Gibson, C.G. 1985. Symmetry sets. In Proceedings of the Royal Society of Edinburgh, vol. 101A, pp. 163–186.Google Scholar
  11. Calabi, L. and Hartnett, W.E. 1968. Shape recognition, prarie fires, convex deficiencies and skeletons. The American Mathematical Monthly, 75(4):335–342.Google Scholar
  12. Caselles, V., Kimmel, R., and Sapiro, G. 1997. On geodesic active contours. International Journal of Computer Vision, 22(1):61–79.CrossRefGoogle Scholar
  13. Cham, T.J. and Cipolla, R. 1995. Symmetry detection trough local skewed symmetries. Image and Vision Computing, 13:439–450.CrossRefGoogle Scholar
  14. Giblin, P.J. and Kimia, B.B. 1999. On the local form and transitions of symmetry sets, and medial axes, and shocks in 2D. In Proceedings of the International Conference on Computer Vision, IEEE, pp. 385–391.Google Scholar
  15. Giblin, P. and Sapiro, G. 1998a. Affine invariant symmetry sets and skew symmetry. In Proceedings of the International Conference on Computer Vision.Google Scholar
  16. Giblin, P.J. and Sapiro, G. 1998b. Affine invariant distances, envelopes and symmetry sets. Geometriae Dedicata, 71:237–261.CrossRefGoogle Scholar
  17. Giblin, P.J. and Sapiro, G. 2000. Real and Complex Singularities, vol. 412 of Research Notes in Mathematics, chapter Affine Versions of the Symmetry Set. Chapman and Hall/CRC, pp. 173–187.Google Scholar
  18. Van Gool, L., Moons, T., and Proesmans, M. 1996. Mirror and point symmetry under perspective skewing. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 285–292.Google Scholar
  19. Van Gool, L., Moons, T., Ungureanu, D., and Oosterlinck, A. 1985. The characterization and detection of skewed symmetry. Computer Vision and Image Understanding, 61:138–150.CrossRefGoogle Scholar
  20. Holtom, P. 2000. Affine-invariant symmetry sets. PhD thesis, Liverpool University.Google Scholar
  21. Jain, R., Kasturi, R.R., and Schunck, B. 1995. Machine Vision. Mc-Graw Hill.Google Scholar
  22. Klee, V.L. Jr., 1949. A characterisation of convex sets. The American Mathematical Monthly, 56(4):247–249.Google Scholar
  23. Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models, International Journal of Computer Vision, 321–331Google Scholar
  24. Katz, R.A. and Pizer, S.M. 2002. Untangling the Blum medial axis transform. International Journal of Computer Vision (submitted).Google Scholar
  25. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A. 1996. Conformal curvature flows: from phase transitions to active vision. Archive for Rational Mechanics and Analysis, 134:275–301.Google Scholar
  26. Kimia, B.B. and Leymarie, F.F. 2001. Symmetry-based representations of 3D data. In Proceedings of the International Conference on Image Processing, IEEE, pp. 581–584.Google Scholar
  27. Kovács, I. and Julesz, B. 1994. Perceptual sensitivity maps within globally defined visual shapes. Nature, 370:644–646.CrossRefGoogle Scholar
  28. Lam, L., Lee, S.-W., and Suen, C.Y. 1992. Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):869–885.CrossRefGoogle Scholar
  29. Lee, S.-W., Lam, L., and Suen, C.Y. 1993. A systematic evaluation of skeletonization algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 7(5):1203–1225.Google Scholar
  30. Lee, T.S., Mumford, D., Zipser, K., and Schiller, P. 1995. Neural correlates of boundary and medial axis representation in primate striate cortex. Investigative Opthalmology and Visual Science Supplement (ARVO Abstract).Google Scholar
  31. Leymarie, F. and Levine, M.D. 1992. Simulating the grassfire transform using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):56–75.CrossRefGoogle Scholar
  32. Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.Google Scholar
  33. Meyer, F. 1990. Digital Euclidean skeletons. In Visual Communications and Image Processing '90, vol. SPIE-1360, Society of Photo-Instrumentation Engineers, pp. 251–262.Google Scholar
  34. Moisan, L. 1998. Affine plane curve evolution: A fully consistent scheme. IEEE Transactions on Image Processing, 7:411–420.CrossRefGoogle Scholar
  35. Mott-Smith, J.C. 1970. Picture Processing and Psychopictorics, chapter Medial Axis Transformations. Academic Press, pp. 267–278.Google Scholar
  36. Motzkin, T.S. 1983a. Sur quelques propriétés charactéristiques des ensembles bornés non convexes. In Selected Papers, Theodore S. Motzkin (ed.), Birkhäuser, pp. 138–143.Google Scholar
  37. Motzkin, T.S. 1983b. FrSur quelques propriétés charactéristiques des ensembles convexes. In Theodore S. Motzkin (ed.), Selected Papers, Birkhäuser, pp. 138–143.Google Scholar
  38. Niblack, C.W., Capson, D.W., and Gibbons, P.B. 1990. Generating skeletons and centerlines from the medial axis transform. In Proceedings of the International Conference on Pattern Recognition, vol. 1, IEEE, pp. 881–885.Google Scholar
  39. Ogniewicz, R. and Ilg, M. 1992. Voronoi skeletons: Theory and applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 63–69.Google Scholar
  40. Ogniewicz, R.L. 1993. Discrete Voronoi Skeletons. Hartung-Gorre Verlag.Google Scholar
  41. Phelps, R.R. 1957. Convex sets and nearest points. In Proceedings of the American Mathematical Society, vol. 8, pp. 790–797.Google Scholar
  42. Pizer, S.M., Eberly, D., and Fritsch, D.S. 1998. Zoom-invariant vision of figural shape: The mathematics of cores. Computer Vision and Image Understanding, 69(1):55–71.CrossRefGoogle Scholar
  43. Ponce, J. 1989. On characterizing ribbons and finding skewed symmetries. In Proceedings of the International Conference on Robotics and Automation, pp. 49–54.Google Scholar
  44. Preparata, F.P. and Shamos, M.I. 1990. Computational Geometry. Texts and Monographs in Computer Science. Springer Verlag.Google Scholar
  45. Pudney, C. 1998. Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Computer Vision and Image Understanding, 72(3):404–413.CrossRefGoogle Scholar
  46. Ranwez, V. and Soille, P. 2002. Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 23:687–702.CrossRefGoogle Scholar
  47. Serra, J. 1982. Image Analysis and Mathematical Morphology, vol. 1. Academic Press.Google Scholar
  48. Serra, J. 1988. Image Analysis and Mathematical Morphology, vol. 2. Academic Press.Google Scholar
  49. Shaked, D. 1996. Symmetry, invariance, and evolution in planar shape analysis. PhD thesis, Technion.Google Scholar
  50. Smoller, J. 1983. Shock Waves and Reaction-Diffusion Equations. Springer Verlag.Google Scholar
  51. Svensson, S., Borgefors, G., and Nyström, I. 1999. On reversible skeletonization using anchor-points from distance transforms. Journal of Visual Communication and Image Representation, 10:379–397.CrossRefGoogle Scholar
  52. Verwer, B.J.H., van Vliet, L.J., and Verbeek, P.W. 1993. Binary and grey-value skeletons: Metrics and algorithms. International Journal of Pattern Recognition and Artifical Intelligence, 7(5):1287–1308.Google Scholar
  53. Wang, S., Rosenfeld, A., and Wu, A.Y. 1982. A medial axis transformation for grayscale pictures. IEEE Transcations of Pattern Analysis and Machine Intelligence, 4(4):419–421.Google Scholar
  54. Wright, M.W., Cipolla, R., and Giblin, P.J. 1995. Skeletonization using an extended Euclidean distance transform. Image and Vision Computing, 13(5):367–375.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marc Niethammer
    • 1
  • Santiago Betelu
    • 2
  • Guillermo Sapiro
    • 3
  • Allen Tannenbaum
    • 1
  • Peter J. Giblin
    • 4
  1. 1.Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of MathematicsUniversity of North TexasDentonUSA
  3. 3.University of MinnesotaMinneapolisUSA
  4. 4.Department of MathematicsUniversity of LiverpoolUK

Personalised recommendations