International Journal of Computer Vision

, Volume 56, Issue 3, pp 195–219

Multiple View Geometry of General Algebraic Curves

  • J.Y. Kaminski
  • Amnon Shashua


We introduce a number of new results in the context of multi-view geometry from general algebraic curves. We start with the recovery of camera geometry from matching curves. We first show how one can compute, without any knowledge on the camera, the homography induced by a single planar curve. Then we continue with the derivation of the extended Kruppa's equations which are responsible for describing the epipolar constraint of two projections of a general algebraic curve. As part of the derivation of those constraints we address the issue of dimension analysis and as a result establish the minimal number of algebraic curves required for a solution of the epipolar geometry as a function of their degree and genus.

We then establish new results on the reconstruction of general algebraic curves from multiple views. We address three different representations of curves: (i) the regular point representation in which we show that the reconstruction from two views of a curve of degree d admits two solutions, one of degree d and the other of degree d(d − 1). Moreover using this representation, we address the problem of homography recovery for planar curves, (ii) dual space representation (tangents) for which we derive a lower bound for the number of views necessary for reconstruction as a function of the curve degree and genus, and (iii) a new representation (to computer vision) based on the set of lines meeting the curve which does not require any curve fitting in image space, for which we also derive lower bounds for the number of views necessary for reconstruction as a function of curve degree alone.

structure from motion algebraic curves epipolar geometry Kruppa's equations multiple-view geometry 3D reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.Y. Kaminski
    • 1
  • Amnon Shashua
    • 2
  1. 1.Mathematics and Computer Science DepartmentBar-Ilan UniversityRamat-GanIsrael
  2. 2.School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations