Advertisement

Veterinary Research Communications

, Volume 28, Issue 1, pp 17–25 | Cite as

Cloning and Sequencing of a 16 kDa Outer Membrane Protein Gene of Pasteurella multocida P52

  • P.P. Goswami
  • P. Chaudhuri
  • V. Tiwari
  • N.S. Parihar
  • P.C. Harbola
Article

Abstract

The outer membrane proteins (OMPs) of Pasteurella multocida are potential immunogens. The 16 kDa OMP of P. multocida P52, serotype B:2, was identified as one of the major immunodominant antigens. The gene omp16, encoding a 16 kDa outer membrane protein, was amplified, cloned into a pBluescript SK(–) vector and sequenced. Complete sequence homology was observed between the 16 kDa OMP gene of P. multocida P52 (serotypes B:2) and P. multocida T16 (somatic serotype 3,4). This gene was distributed among different serotypes of P. multocida and found to localize in a 6.0 kb HindII fragment of the P. multocida genome.

gene haemorrhagic septicaemia Pasteurella multocida outer membrane protein sequencing serotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allen, M.S., 1996. Relationship between ruminal fermentation and the requirement for physically effective fiber. Journal of Dairy Science, 80, 1447-1462Google Scholar
  2. Allen, M.S. and Beede, D., 1996. Causes, detection and prevention of ruminal acidosis in dairy cattle examined. Feedstuffs, (9 Sept), 13-16Google Scholar
  3. Altman, D.G. and Bland, J.M., 1983. Measurement in medicine: the analysis of method comparison studies. The Statistician, 32, 307-317CrossRefGoogle Scholar
  4. Aslan, V, Thamsborg, S.M, Jørgensen, R.J. and Basse, A., 1995. Induced acute ruminal acidosis in goats treated with yeast (Saccharomyces cerevisiae) and bicarbonate. Acta Veterinaria Scandinavica, 36, 65-77PubMedGoogle Scholar
  5. Beauchemin, K.A., 1991. Ingestion and mastication of feed by dairy cattle. Veterinary Clinics of North America: Food Animal Practice, 7, 439-443PubMedGoogle Scholar
  6. Blom, J.Y., 1993. Diseases and feeding in Danish dairy herds. Acta Veterinaria Scandinavica, 89, 17-22PubMedGoogle Scholar
  7. Britton, R.A. and Stock, R.A., 1986. Acidosis, Rate of Starch Digestion and Intake, (Oklahoma Agricultural Experimental Station, MP-121), 125-137Google Scholar
  8. Bryant, M.P. and Robinson, L.M., 1968. Effects of diet, time after feeding, and position sampled on number of viable bacterias in the bovine rumen. Journal of Dairy Science, 51, 1950-1955PubMedGoogle Scholar
  9. Counotte, G.H.M. and Prins, R.A., 1981. Regulation of lactate metabolism in the rumen. Veterinary Research Communications, 5, 101-115CrossRefPubMedGoogle Scholar
  10. Crichlow, E.C., 1988. Ruminal lactic acidosis: forestomach epithelial receptor activation by undissociated volatile fatty acids and rumen fluids collected during loss of reticuloruminal motility. Research in Veterinary Science, 45, 364-368PubMedGoogle Scholar
  11. Dirksen, G., 1985. Der Pansenazidose-Komplex-neuere Erkentnisse und Erfahrunge (1). Tierärztliche Praxis, 13, 501-512PubMedGoogle Scholar
  12. Dirksen, G., 1986. Der Pansenazidose-Komplex-neuere Erkenntnisse und Erfahrungen (2). Tierärztliche Praxis, 14, 23-33PubMedGoogle Scholar
  13. Distl, O., Francos, G., Mayer, E., Ron, M. and Kräusslich, H., 1989. Short and long term associations between production disorders and milk yield in dairy cows. Proceedings of the 7th International Congress on Production Diseases in Farm Animals (ICPD), Ithaca, NY, 113-116Google Scholar
  14. Dunlop, R.H., 1972. Pathogenesis of ruminant lactic acidosis. Advances in Veterinary Science and Comparative Medicine, 16, 259-302PubMedGoogle Scholar
  15. Eastridge, M.L., Finn, M.M., Harmison, B.S. and Firkins, J.L., 1995. Factors effecting fecal pH in dairy cows. ASAS/ADSA Midwest Branch Annual Meeting, 105-105 (Abstract)Google Scholar
  16. Emery, R.S., 1988. Milk fat depression and the influence of diet on milk composition. Veterinary Clinics of North America: Food Animal Practice, 4, 289-305PubMedGoogle Scholar
  17. Enemark, J.M.D. and Jørgensen, R.J., 2000. Bestemmelse af Netto Syre-Base Ekskretion i kvægurin: Teori og praksis. (Determination of renal net acid base excretion in cattle urine: theory and practice). Danish Veterinary Journal (DVT), 1, 6-11Google Scholar
  18. Enemark, J.M.D. and Jørgensen, R.J., 2003. Net acid-base excretion in cattle urine. Evaluation of analytical methods, utility and possible amployment in herd health management. (In preparation)Google Scholar
  19. Enemark, J.M.D., Jørgensen, R.J. and Enemark, P.S., 2002. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: a review. Veterinarija ir Zootechnika, 42, 16-29Google Scholar
  20. Ferreira, J.J., Noller, C.H., Kyser, R.B. and Stewart, T.S., 1980. Influence of dietary calcium and protein on fecal pH, hydrogen-ion concentration, consistency, and rate of passage in dairy cattle. Journal of Dairy Science, 63, 1091-1099PubMedCrossRefGoogle Scholar
  21. Fürll, M., Lachmann, G. and Lippmann, R., 1977. Untersuchungen zur metabolischen Azidose beim Schaf. 1. Mitt.: Zum Verhalten von Serumenzymen und Kreatinin unter den Bedingungen einer metabolischen Azidose. Monatshefte der Veterinärmedicin, 32, 248-251Google Scholar
  22. Garrett, E.F., Pereira, M.N., Armentano, L.E., Nordlund, K.V. and Oetzel, G.R., 1995. Comparison of pH and VFA concentration of rumen from dairy cows collected through a rumen canula vs. rumenocentesis. Journal of Dairy Science, 78, 299 (Abstract)Google Scholar
  23. Geishauser, T., 1994. A probe for collection of ruminal fluid in juvenile cattle and cows. The Bovine Practitioner, 28, 113-116Google Scholar
  24. Gentile, G.S., Cinotto, G., Ferri, G. and Famigli-Bergamini, P., 1986. Nutritional acidosis and technological characteristics of milk in high producing dairy cows. In: Harigan, P.J. and Monaghan, M.L. (eds), Proceedings of the XIV World Congress on Diseases of Cattle, Dublin, Ireland, 823-829Google Scholar
  25. Grant, R.J. and Mertens, D.R., 1992. Influence of buffer pH and raw corn starch addition on in vitro fiber digestion kinetics. Journal of Dairy Science, 75, 2762-2768PubMedCrossRefGoogle Scholar
  26. Grummer, R.R., Jacob, A.L. and Woodford, J.A., 1987. Factors associated with variation in milk fat depression resulting from high grain diets fed to dairy cows. Journal of Dairy Science, 70, 613-619CrossRefGoogle Scholar
  27. Hölterschinken, M., Vlizlo, V., Mertens, M. and Scholz, H., 1992. Untersuchungen zur Zusammensetzung von über Sonde bzw. Fistel gewonnenem Pansensaft des Rindes. Deutsche Tierärztliche Wochenschrift, 99, 228-230Google Scholar
  28. Ireland-Perry, R.L. and Stalling, C.C. 1993. Fecal consistency as related to dietary composition in lactating Holstein cows. Journal of Dairy Science, 76, 1074-1080PubMedCrossRefGoogle Scholar
  29. Jardon, P.W., 1995. Using urine pH to monitor snionic dalt programs. Compendium on Continuing Education for the Practicing Veterinarian - Food Animal, 17, 860-862Google Scholar
  30. Jensen, A.L., Petersen, M.B. and Houe, H., 1993. Determination of the fructosamine concentration in bovine serum samples. Journal of Veterinary Medicine A, 40, 111-117CrossRefGoogle Scholar
  31. Kertz, A.F., Reutzel, L.F. and Thomson, G.M., 1991. Dry matter intake from parturition to mid-lactation. Journal of Dairy Science, 74, 2290-2295PubMedCrossRefGoogle Scholar
  32. Kovàc, G., Mudron, P. and Bartko, P., 1986. Comparative studies on the pH of blood, rumen and abomasal fluid, feces and urine in cattle. Folia Veterinaria, 30, 21-35Google Scholar
  33. Kristensen, N.B., Hansen, O. and Clausen, T., 1995. Measurement of the total concentration of functional Na+,K+-pumps in rumen epithelium. Acta Physiologica Scandinavica, 155, 67-76CrossRefPubMedGoogle Scholar
  34. Kutas, F., 1965. Determination of net acid-base excretion in the urine of cattle. Acta Veterinaria Academiae Scientiarum Hungaricae, 15, 147-153PubMedGoogle Scholar
  35. Leedle, J.A.Z., Coe, M.L. and Russel, A.F., 1995. Evaluation of health and ruminal variables during adaptation to grain-based diets in beef cattle. American Journal of Veterinary Research, 57, 885-892Google Scholar
  36. Nocek, J.E., 1997. Bovine acidosis: implications on laminitis. Journal of Dairy Science, 80, 1005-1028PubMedCrossRefGoogle Scholar
  37. Nordlund, K.V. and Garrett, E.F., 1994. Rumenocentesis: a technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds. The Bovine Practitioner, 28, 109-112Google Scholar
  38. Nordlund, K.V., Garrett, E.F. and Oetzel, G.R., 1995. Herd-based rumenocentesis: a clinical approach to the diagnosis of subacute rumen acidosis. Compendium on Continuing Education for the Practicing Veterinarian - Food Animal, 17, S48-S56Google Scholar
  39. Owens, F.N., Secrist, D.S., Hill, W.J. and Gill, D.R., 1998. Acidosis in cattle: a review. Journal of Animal Science, 76, 275-286PubMedGoogle Scholar
  40. Palmquist, D., 1994. Effects of feeding on milk composition. Proceedings of the Tri-state Nutritional Conference, 26 May, Fort Wayne, IN, 85-106Google Scholar
  41. Peterson, R.G. and Waldern, D.E., 1981. Repeatabilities of serum constituents in Holstein-Friesians affected by feeding, age, lactation and pregnancy. Journal of Dairy Science, 64, 822-831PubMedCrossRefGoogle Scholar
  42. Reed, W.D.C. and Elliott, R.C., 1965. Phosphorus excretion of cattle fed on high-energy diets. Nature, 208, 953-954CrossRefPubMedGoogle Scholar
  43. Roby, K.A.W., Chalupa, W., Orsini, J.A., Elser, H. and Kronfeld, S., 1987. Acid-base and electrolyte balance in diary heifers fed forage and concentrate rations: effects of sodium bicarbonate. American Journal of Veterinary Research, 48, 1012-1016PubMedGoogle Scholar
  44. Topps, J.H., Reed, W.D.C. and Elliott, R.C., 1966. Studies of the metabolism of cattle given high concentrate diets. Journal of Agricultural Science, 66, 233-240CrossRefGoogle Scholar
  45. van Dijk, S., Wensing, Th., Phil, D., van Beukelen, P. and Breuking, H.J., 1983. Changes of serum enzyme activities in cows with milk fat depression. American Journal of Veterinary Research, 44, 674-676PubMedGoogle Scholar
  46. Whitaker, D.A., 1997. Interpretation of metabolic profiles in dairy cows. Cattle Practice, 5, 57-60Google Scholar
  47. Wohlt, J.E., Clark, J.H. and Blaisdell, F.S., 1976. Effect of sampling location, time and method of concentration of ammonia nitrogen in rumen fluid. Journal of Dairy Science, 59, 459-464PubMedCrossRefGoogle Scholar
  48. Yang, C.-M. and Varga, G.A., 1989. Effect of sampling site on protozoa and fermentation end products in the bovine rumen of dairy cows. Journal Dairy Science, 72, 1492-1498CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P.P. Goswami
    • 1
  • P. Chaudhuri
    • 1
  • V. Tiwari
    • 1
  • N.S. Parihar
    • 1
  • P.C. Harbola
    • 2
  1. 1.National Biotechnology Centre, Division of PathologyIndian Veterinary Research Institute, IzatnagarU.P.India
  2. 2.Indian Veterinary Research InstituteMukteshwar, UttaranchalIndia

Personalised recommendations