Plant Ecology

, Volume 171, Issue 1–2, pp 185–196 | Cite as

Fire adaptations in the Canary Islands pine (Pinus canariensis)

  • José Climent
  • Raúl Tapias
  • José A. Pardos
  • Luis Gil

Abstract

A wide set of phenotypic characteristics related to life history were studied in mature stands of Pinus canariensis throughout its natural range of distribution in the Canary archipelago. Natural forests ranging from those located in xeric areas through to the sub-tropical cloud forests and high mountain stands were classified into eight ecological regions according to their main climatic features. The recent history of forest fires (covering the last 30 years) was taken into account using a categorical factor with three levels. The phenotypic variables studied included those related to seed dispersal (cone size, number of seed scales, seed and wing size and percentage of serotinous trees) and stem growth both on the breast height section (bark thickness, radial growth at various ages and sapwood and heartwood sizes) and on the entire stem (height growth related to age). The average percentage of serotinous trees present in the ecological regions studied varied from 3 to 35%. Average bark thickness in adult trees ranged from 22 to 49 mm and was found to be unrelated to age or diameter. Growth both in height and diameter was found to decline after an average of 25 years, although clear trends in relation to this could not be established across the ecological regions. A high correlation was found to exist between annual rainfall, fire frequency, serotiny and bark thickness at a regional level. Sapwood area per hectare proved to be a valuable indirect site-quality index for the objectives of this paper. Favourable sites (characterised by a high sapwood area per hectare) displayed the highest levels of both bark thickness and serotiny. These particular areas are those, which have suffered more frequent and intense fires over the last decades. The evolutionary implications of this trend and of other general traits of the species, such as vegetative resprouting, are discussed here in relation to the role of understorey vegetation in fire regimes, competition and volcanic history of the islands.

Bark thickness Cone Life history Resprouting Serotiny Volcanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agee J.K. 1998. Fire and pine ecosystems. In: Richardson D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge University Press, pp. 193-218.Google Scholar
  2. Anonymous 2002. Estadísticas de Incendios Forestales. Canary Islands Government. http: //www.gobcan.es/ medioambiente/ incendios/ComunidadAutonoma.html.Google Scholar
  3. Beaufait W.R. 1960. Some effects of high temperatures on the cones and seeds of jack pine. Forest Science 6: 194-199.Google Scholar
  4. Blanco A., Castroviejo M., Fraile J.L., Gandullo J.M., Muñoz L.A. and Sanchez O. 1989. Estudio ecológico del Pino canario. Serie Técnica, 6. ICONA, Madrid, 199 pp.Google Scholar
  5. Cain D. and Shelton G. 2000. Survival and growth of Pinus echinata and Quercus seedlings in response to simulated summer and winter prescribed burns. Canadian Journal of Forest Research 30: 1830-1836.CrossRefGoogle Scholar
  6. Carracedo J.C., Day S.J. and Guillou H. 1999a. Quaternary collapse structures and the evolution of the western Canaries La Palma and El Hierro. Journal of Volcanology and Geothermal Research 94: 169-190.Google Scholar
  7. Carracedo J.C., Day S.J., Guillou H. and Gravestock P. 1999b. The later stages of the volcanic and structural evolution of La Palma, Canary Islands: The Cumbre Nueva giant collapse and the Cumbre Vieja Volcano. Geological Society of America Bulletin 111: 755-768.CrossRefGoogle Scholar
  8. Ceballos L. and Ortuño F. 1976. Vegetación y flora forestal de las Canarias Occidentales. Excmo. Cabildo Insular de Tenerife. Sta Cruz de Tenerife, 433 pp.Google Scholar
  9. Climent J., Chambel R., Gil L. and Pardos J. 2003. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. Forest Ecology and Management 174: 203-211.CrossRefGoogle Scholar
  10. Climent J., Chambel R., Pérez E., Gil L. and Pardos J. 2002. Relationship between heartwood radius and early growth, tree age and climate in Pinus canariensis. Canadian Journal of Forest Research 32: 103-111.CrossRefGoogle Scholar
  11. Climent J., Gil L. and Pardos J. 1993. Heartwood and sapwood development and its relationship to growth and environment in Pinus canariensis Chr. Sm ex DC. Forest Ecology and Management 59: 1-2.CrossRefGoogle Scholar
  12. Climent J., Gil L. and Pardos J.A. 1998. Xylem anatomical traits related to resinous heartwood formation in Pinus canariensis Sm. Trees: Structure and Function 123: 139-145.Google Scholar
  13. Escudero A., Nunez Y. and Perez-Garcia F. 2000. Is fire a selective force of seed size in pine species? Acta Oecologica 214: 245-256.Google Scholar
  14. Farjon A. and Styles B.T. 1997. Pinus (Pinaceae). Flora Neotropica, Monograph 75. The New York Botanical Garden, New York, 291 pp.Google Scholar
  15. Forde M.B. 1964. Variation in natural populations of Pinus radiata in California. Part 3. Cone characters. New Zealand Journal of Botany 2: 459-485.Google Scholar
  16. Frankis M. 1999. Pinus brutia (Pinaceae). Curtis’s Botanical Magazine 16: 173-184.Google Scholar
  17. Gil L., Climent J., Nanos N., Mutke S., Ortiz I. and Schiller G. 2002. Cone morphology variation in Pinus canariensis Sm. Plant Systematics and Evolution 235: 35-51.CrossRefGoogle Scholar
  18. Helm R.F. 2000. Heartwood formation in woody plants. Biotech Times 72: 1-3.Google Scholar
  19. Keeley J. and Zedler P. 1998. Life history evolution in pines. In: Richardson D.M. (ed.), Ecology and biogeography of Pinus. Cambridge University Press, pp. 219-242.Google Scholar
  20. Klaus W. 1989. Mediterranean pines and their history. Plant Systematics and Evolution 162: 133-163.CrossRefGoogle Scholar
  21. Kozlowski T.T. 1971. Growth and development of trees. Vol 2. Academic Press, N.Y. 505 pp.Google Scholar
  22. Krupkin A.B., Liston A. and Strauss S.H. 1996. Phylogenetic analysis of the hard pines Pinus subgenus Pinus, Pinaceae from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489-98.CrossRefGoogle Scholar
  23. Ledig F.T. and Little S. 1979. Pitch pine (Pinus rigida Mill.): ecology, physiology and genetics. In: R.T.T. Forman Editor, Pine barrens, ecosystem and landscape. Academic Press, New York, pp. 347-371.Google Scholar
  24. Liston A., Robinson W., Piñero D. and Alvarez-Buylla E. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Molecular Phylogenetics and Evolution 11: 95-109.PubMedCrossRefGoogle Scholar
  25. Marzol M.V. 1988. La lluvia, un recurso natural para Canarias. S? publ. Caja Gral. Ahorros de Canarias, Sta. Cruz de Tenerife, 220 pp.Google Scholar
  26. Mencuccini M. and Grace J. 1994. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiology 15: 1-10.Google Scholar
  27. Nathan R. and Ne'eman G. 2000. Serotiny, seed dispersal and seed predation in Pinus halepensis. In: Ne'eman G. and Trabaud L. (eds.), Ecology, biogeography and management of Pinus halepensis and P. brutia forests in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 105-118.Google Scholar
  28. Nathan R., Safriel U.N., Noy-Meir I. and Schiller G. 1999. Seed release without fire in Pinus halepensis, aMediterranean serotinous wind-dispersed tree. Journal of Ecology 87: 659-669.CrossRefGoogle Scholar
  29. Page C.N. 1974. Morphology and affinities of Pinus canariensis. Notes of the Royal Botanical Garden of Edinburgh 332: 317-323.Google Scholar
  30. Perry J.P. 1991. The Pines of Mexico and Central America. Timber Press, Portland, 231 pp.Google Scholar
  31. Peters J., Luis V., Jiménez M.S., Gil P. and Morales D. 2001. In-fluencia de la luz en el crecimiento y mortalidad de plántulas de Pinus canariensis. Proceedings of III Congreso Forestal Español (Tomo I) held in Granada, 25-28/9/2001, Junta de Andalucía, pp. 363-368.Google Scholar
  32. SCBD 2001. Impact of human-caused fires on biodiversity and ecosystem functioning and their causes in tropical, temperate and boreal forest biomes. Report no. 5, Secretariat of the Convention on Biologycal Diversity, Montreal.Google Scholar
  33. Schwilk D.W. and Ackerly D.D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94: 326-336.CrossRefGoogle Scholar
  34. Strauss S.H. and Doerksen A.H. 1990. Restriction fragment analysis of pine phylogeny. Evolution 44: 1081-1096.Google Scholar
  35. Tapias R., Gil L., Fuentes-Utrilla P. and Pardos J.A. 2001. Canopy seed banks in mediterranean pines of southeastern Spain. Acomparison between Pinus halepensis Mill., P. pinaster Ait.,P. nigra Arn. and P. pinea L. Journal of Ecology 89: 629-638.CrossRefGoogle Scholar
  36. Tausch R.J. and Tueller P.T. 1989. Evaluation of pinyon sapwood to phytomass relationships over different site conditions. Journal of Range Management 423: 209-212.Google Scholar
  37. Tinker D.B., Romme W.H., Hargrove W.W., Gardner R.H. and Turner M.G. 1994. Landscape-scale heterogeneity in lodgepole pine serotiny. Canadian Journal of Forest Research 24: 897-903.Google Scholar
  38. Waring R.H., Gholz H.L., Grier C.C. and Plummer M.L. 1977. Evaluating stem conducting tissue as an estimator of leaf area in four woody angiosperms. Canadian Journal of Botany 55: 1474-1477.CrossRefGoogle Scholar
  39. Zammit and Westoby 1988. Pre-dispersal seed losses and the survival of seeds and seedlings of two serotinous Banksia shrubs in burnt and unburnt heath. Journal of Ecology 76: 200-214.Google Scholar
  40. Ziegler H. 1964. Storage, mobilization and distribution of reserve materials in trees. In: Zimmermann M.H. (ed.), The formation of wood in forest trees. Academic Press, London, pp. 303-321.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • José Climent
    • 1
  • Raúl Tapias
    • 2
  • José A. Pardos
    • 1
  • Luis Gil
    • 1
  1. 1.U.D. Anatomía, Fisiología y Genética ForestalETSI de Montes (UPM)MadridSpain
  2. 2.Departamento de Ciencias Agroforestales, Escuela Politécnica SuperiorUniversidad de HuelvaPalos de la FronteraSpain

Personalised recommendations