Plant Ecology

, Volume 173, Issue 2, pp 191–201 | Cite as

Canopy seed bank structure in relation to: fire, tree size and density

  • S. Goubitz
  • R. Nathan
  • R. Roitemberg
  • A. Shmida
  • G. Ne’eman
Article

Abstract

To assess the canopy seed bank structure of Pinus halepensis, we measured the level of serotiny and the seed bank size and density of trees in unburned stands and post-fire regenerated stands in Israel. We analysed the effects of tree size, tree density and fire history on the level of serotiny. The level of serotiny decreased with an increase in tree height. The high level of serotiny in short trees could be explained by selection to increase regeneration chances after burning at pre-mature age. Also, limitation of long-distance seed dispersal opportunities in short trees may favour high serotiny levels. The level of serotiny was higher in post-fire stands than in unburned stands, suggesting a fast selection for serotiny by fire. Unburned stands had a higher total stand seed density than post-fire regenerated stands, but the proportion of seeds in serotinous cones of the total stand seed density was higher in post-fire regenerated stands. The fact that P. halepensis bears simultaneously serotinous and non-serotinous cones reflects its dual strategy as both a post-fire obligate seeder, mainly from serotinous cones and an early coloniser during fire-free periods, mainly from non-serotinous cones. The relative investment in these strategies is dependent on fire history and varies with tree height. Furthermore, mature brown cones can contribute to post-fire regeneration in case of spring fires, and serotinous cones are known to open partially also in dry spell events. Thus, post-fire regeneration and invasion are strategies, which seem to complement each other.

Cone production Dual life strategy Pinus halepensis Post-fire regeneration Serotiny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agee J.K. 1998. Fire and pine ecosystems. In: Richardson D.M. (Ed.), Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp. 193–218.Google Scholar
  2. Arianoutsou M. and Ne'eman G. 2000. Post-fire regeneration of natural Pinus halepensis forests in the east Mediterranean basin. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 269–289.Google Scholar
  3. Barbéro M., Loisel R., Quézel P., Richardson D.M. and Romane F. 1998. Pines of the Mediterranean basin. In: Richardson D.M. (Ed.),Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp. 153–170.Google Scholar
  4. Bond W.J. and vanWilgen B.W. 1996. Fire and Plants. Usher M.B., DeAngelis D.L. and Manly B.F.J. (Eds.), Chapman and Hall, London.Google Scholar
  5. Cowling R.M. and Lamont B.B. 1985. Variation in serotiny of three Banksia species along a climatic gradient. Austr. J. Ecol. 10: 345–350.Google Scholar
  6. Critchfield W.A. 1985. The later quaternary history of lodgepole and jack pines. Can. J. For. Res. 15: 749–772.Google Scholar
  7. Daskalakou E.N. and Thanos C.A. 1996. Aleppo pine-Pinus halepensis-postfire regeneration: the role of canopy and soil seed banks. Int. J. Wildland Fire 6: 59–66.Google Scholar
  8. Enright N.J., Marsula R., Lamont B.B. and Wissel C. 1998. The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubs. J. Ecol. 86: 946– 959.Google Scholar
  9. Gaudet C.L. and Keddy P.A. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334: 242–243.Google Scholar
  10. Gauthier S., Bergeron Y. and Simon J.P. 1993. Cone serotiny in jack pine: ontogenetic, positional and environmental effects. Can. J. For. Res. 23: 394–401.Google Scholar
  11. Gauthier S., Bergeron Y. and Simon J.P. 1996. Effects of fire regime on the serotiny level of jack pine. J. Ecol. 84: 539–548.Google Scholar
  12. Grace S.L. and Platt W.J. 1995. Effects of adult tree density and fire on the demography of pregrass stage juvenile longleaf pine (Pinus palustris Mill.). J. Ecol. 83: 75–86.Google Scholar
  13. Greene D.F. and Johnson E.A. 1996. Wind dispersal of seeds from a forest into a clearing. Ecology 77: 595–609.Google Scholar
  14. Keeley J.E. 1994. Seed-germination patterns in fire-prone Mediterranean climate regions. In: Arroyo M.T.K., Zedler P.H. and Fox M.D. (Eds.), Ecology and Biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer, Berlin, pp. 239–273.Google Scholar
  15. Keeley J.E. and Zedler P.H. 1998. Evolution of life histories in pines. In: Richardson D.M. (Ed.), Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp. 219–249.Google Scholar
  16. Keeley J.E., Ne'eman G. and Fotheringham C.J. 1999. Immaturity risk in a fire-dependent pine. J. Med. Ecol. 1: 41–48.Google Scholar
  17. Lamont B.B. 1991. Canopy seed storage and release – what's in a name? Oikos 60: 266–268.Google Scholar
  18. Lamont B.B., Le Maitre D.C., Cowling R.M. and Enright N.J. 1991. Canopy seed storage in woody plants. Bot. Rev. 57: 277–317.Google Scholar
  19. Lanner R.M. 1998. Seed dispersal in Pinus. In: Richardson D.M. (Ed.), Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp. 281–295.Google Scholar
  20. Leone V., Logiurato A. and Saracino A. 1999. Serotiny in Pinus halepensis Mill., recent issues. In: Ne'eman G. and Izhaki I. (Eds.), Abstracts of MEDPINE, International Workshop on Mediterranean Pines. Beit Oren, Israel, 34 p.Google Scholar
  21. Lepart J. and Debussche M. 1991. Invasion processes as related to succession and disturbance. In: Groves R.H. and di Castri F. (Eds.), Biogeography of Mediterranean Invasions. Cambridge University press, Cambridge, pp. 159–177.Google Scholar
  22. Lotan J.E. 1975. The role of cone serotiny in lodgepole pine forests. In: Baumgartner D.M. (Ed.), The Management of Lodgepole pine Ecosystems. Washington State University, Pulman WA, pp. 471–495.Google Scholar
  23. McMaster G.S. and Zedler P.H. 1981. Delayed seed dispersal in Pinus torreyana (Torrey pine). Oecologia 51: 62–66.Google Scholar
  24. Nathan R. and Ne'eman G. 2000. Serotiny, seed dispersal and seed predation in Pinus halepensis. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 105–118.Google Scholar
  25. Nathan R., Safriel U.N., Noy-Meir I. and Schiller G. 1999. Seed release without fire in Pinus halepensis, a Mediterranean serotinous wind-dispersed tree. J. Ecol. 87: 659–669.Google Scholar
  26. Nathan R., Safriel U.N., Noy-Meir I. and Schiller G. 2000. Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology 81: 2156–2169.Google Scholar
  27. Nathan R., Horn H.S., Chave J. and Levin S.A. 2001a. Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In: Levey D.J., Silva W.R. and Galetti M. (Eds.), Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CAB International, Oxfordshire, UK, pp. 69–82.Google Scholar
  28. Nathan R., Safriel U.N. and Noy-Meir I. 2001b. Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 82: 374–388.Google Scholar
  29. Naveh Z. 1974. Effects of fire in the Mediterranean region. In: Kozlowsky T.T. and Ahlgren C.E. (Eds.), Fire and Ecosystems. Academic Press, New York, pp. 401–434.Google Scholar
  30. Ne'eman G. and Izhaki I. 1999. The effect of stand age and microhabitat on soil seed banks in Mediterranean Aleppo pine forests after. Plant Ecol. 144: 115–125.Google Scholar
  31. Oke T.R. 1987. Boundary layer climates, 2nd ed. Methuen, London.Google Scholar
  32. Panetsos K.P. 1981. Monograph of Pinus halepensis and Pinus brutia. Annales Forestales (Zagreb) 9: 39–77.Google Scholar
  33. Perry D.A. and Lotan J.E. 1979. A model of fire selection for serotiny in lodgepole pine. Evolution 33: 958–968.Google Scholar
  34. Quézel P. 2000. Taxonomy and biogeography of Mediterranean pines (Pinus halepensis and P. brutia). In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 1–12.Google Scholar
  35. Richardson D.M. 2000. Mediterranean pines as invaders in the Southern Hemisphere. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 131–142.Google Scholar
  36. Roitemberg D. and Ne'eman G. 1999. Post-fire seed dispersal in Pinus halepensis. In: Ne'eman G. and Izhaki I. (Eds.), Abstracts of MEDPINE, International Workshop on Mediterranean Pines. Beit Oren, Israel, p. 46.Google Scholar
  37. Saracino A., Pacella R., Leone V. and Borghetti M. 1997. Seed dispersal and changing seed characteristics in a Pinus halepensis Mill. Forest after fire. Plant Ecol. 130: 13–19.Google Scholar
  38. Schiller G., Conckle M.T. and Grunwald C. 1985. Local differentiation among Mediterranean populations of Aleppo pine in their isoenzymes. Silvae Genetica 35: 11–19.Google Scholar
  39. Schiller G., Ne'eman G. and Korol L. 1997. Post-fire vegetation dynamics in a native Pinus halepensis Mill. forest on Mt. Carmel Israel. Isr. J. Plant Sci. 45: 297–308.Google Scholar
  40. Shmida A., Ne'eman G., Goubitz S. and Lev-Yadun S. 2000. Sexual allocation and gender segregation in Pinus halepensis. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 91–104.Google Scholar
  41. Smith H., Casal J.J. and Jackson G.M. 1990. Reflection signals and the perception by phytochrome of the proximity of neighbouring vegetation. Plant Cell and Environment 13: 73–78.Google Scholar
  42. Teich A.H. 1970. Cone serotiny and inbreeding in natural populations of Pinus banksiana and Pinus contorta. Can. J. Bot. 48: 1805–1809.Google Scholar
  43. Thanos C.A. and Daskalakou E.N. 2000. Reproduction in Pinus halepensis and P. brutia. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 79–90.Google Scholar
  44. Trabaud L. 1987. Fire and survival traits of plants. In: Trabaud L. (Ed.), The Role of Fire in Ecological Systems. SPB Academic Publishing, The Hague, pp. 65–89.Google Scholar
  45. Trabaud L. 1991. Is fire an agent favoring plant invasions? In: Groves R.H. and di Castri F. (Eds.), Biogeography of Mediterranean Invasions. Cambridge University Press, Cambridge, pp. 179–189.Google Scholar
  46. Trabaud L. 2000. Post-fire regeneration of natural Pinus halepensis forests in the west Mediterranean. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 257–268.Google Scholar
  47. Weinstein-Evron M. and Lev-Yadun S. 2000. Palaeoecology of Pinus halepensis in Israel in the light of palaeoecological and archeobotanical data. In: Ne'eman G. and Trabaud L. (Eds.), Ecology, Biogeography, and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean basin. Backhuys Publishers, Leiden, pp. 119–130.Google Scholar
  48. Zar J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., New Jersey.Google Scholar
  49. Zedler P. 1995. Fire frequency in southern California shrublands: biological effects and management options. In: Keeley J.E. and Scott T. (Eds.), Brushfires in California Wildlands: Ecology and Resource Management. International Association of Wildland Fire, Fairfield WA, pp. 101–112.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Goubitz
    • 1
  • R. Nathan
    • 2
  • R. Roitemberg
    • 3
  • A. Shmida
    • 4
  • G. Ne’eman
    • 3
  1. 1.Department of Plant Ecology, Faculty of BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Life SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Department of BiologyUniversity of Haifa at OranimTivonIsrael
  4. 4.Department of Evolution, Systematics and Ecology, The Silberman Institute for Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations