Plant Ecology

, Volume 173, Issue 2, pp 215–223 | Cite as

Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient

  • A. Cierjacks
  • I. HensenEmail author


Mediterranean ecosystems are traditionally influenced by human disturbance. In the mountain chains of south-eastern Spain, holm oak forests representing the potential natural vegetation are currently highly fragmented and subjected to extensive grazing by goats and sheep. This grazing activity by large herbivores has important impacts on community structure and dynamics of the remaining remnants because several processes associated with reproduction are affected. The present research analyses the variation of stand structure and regeneration of six forests dominated by Quercus ilex along a gradient of increasing grazing intensity. Stands of higher grazing intensity are characterized by a lower trunk number. Particularly, trees > 1.3 m height and diameter classes < 20 cm are clearly less represented. In addition, more intensively grazed forests show a highly aggregated dispersion of trees, which might be explained by an increase of clonally produced ramets by silvipastoral use. On the other hand, no Quercus ilex seedlings were found in any of the stands examined, although acorn production was high and did not correlate with grazing intensity. However, grazing clearly influences the quality of acorn harvest. We found a significant negative correlation between acorn length, acorn mass and grazing intensity and a positive correlation between the percentage of aborted acorns, acorn predation and herbivore activity. Thus, management of grazing in holm oak forests must take the high influence that livestock exerts on the regeneration of Quercus ilex into account, and maximum sustainable grazing intensity should be significantly lower than 0.8 animals per ha.

Acorn predation Acorn quality Forest conservation Grazing intensity Quercus ilex South-eastern Spain Sustainable Land-use Vegetative reproduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacilieri R., Bouchet M.A., Bran D., Grandjanny M., Maistre M., Perret P. and Romane F. 1993. Germination and regeneration mechanisms in Mediterranean degenerate forests. J. Veg. Sci. 4: 241–246.Google Scholar
  2. Bakker J.P. 1998. The impact of grazing on plant communities. In: Wallis de Vries M., Bakker J.P. and van Wieren S.E. (Eds.), Grazing and conservation management. Kluwer Academic Publishers, Dordrecht, pp. 137–155.Google Scholar
  3. Barbéro M., Bonin G., Loisel R. and Quézel P. 1990. Changes and disturbances of forest ecosystems caused by human activities in the western part of the mediterranean basin. Vegetatio 87: 151–173.Google Scholar
  4. Begon M.E., Townsend C.R. and Harper J.L. 1996. Ecology, 3rd ed. Blackwell Scientific Publications, Oxford.Google Scholar
  5. Bellon S. and Guérin G. 1992. Old holm oak coppices... new silvopastoral practices. Vegetatio 99-100: 307–316.Google Scholar
  6. Bilbrough C.J. and Richards J.H. 1993. Growth of sagebrush and bitterbrush following simulated winter browsing: mechanisms of tolerance. Ecology 74: 481–492.Google Scholar
  7. Bran D., Lobréaux O., Maistre M., Perret P. and Romane F. 1990. Germination of Quercus ilex and Q. pubescens in a Q. ilex coppice. Long-term consequences. Vegetatio 87: 45–50.Google Scholar
  8. Bussotti F. and Grossoni P. 1998. Des Problèmes dans la classification des chênes. Taxonomie en Europe et région méditerranéenne. Forêt Méditerranéenne 19: 267–278.Google Scholar
  9. Canadell J., Djema A., López B., Lloret F., Sabaté S., Siscart D. and Gracia C.A. 1999. Structure and dynamics of the root system. In: Rodà F., Retana J., Gracia C.A. and Bellot J. (Eds.), Ecology of Mediterranean Evergreen Oak Forests. Ecol. Stud. 137. Springer Verlag, Berlin, Heidelberg, pp. 47–59.Google Scholar
  10. Cierjacks A., Hensen I. and Sanchez P. 2002. Effects of grazing on the species composition in a holm oak forest community of south-eastern Spain (Adenocarpo decorticantis-Quercetum rotundifoliae Rivas Martínez 1987). Bot. Jahrb. Syst. 123: 447–461.Google Scholar
  11. Clark J.P. and Evans F.C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35: 445–453.Google Scholar
  12. Cuartas P. and García-Gónzalez R. 1992. Quercus ilex browse utilisation by caprini in Sierra de Cazorla and Segura (Spain). Vegetatio 99-100: 317–330.Google Scholar
  13. Debussche M., Debussche G. and Lepart J. 2001. Changes in the vegetation of Quercus pubescens woodland after cessation of coppicing and grazing. J. Veg. Sci. 12: 81–92.Google Scholar
  14. DeGange A.R., Fitzpatrick J.W. and Layne J.N. 1989. Acorn harvesting by Florida Scrub Jays. Ecology 70: 348–356.Google Scholar
  15. Ducrey M. and Boisserie M. 1992. Recrû naturel dans des taillis de chêne vert (Quercus ilex L.) à la suite d´exploitations partielles. Ann. Sci. For. 49: 91–109.Google Scholar
  16. Ducrey M. and Toth J. 1992. Effect of cleaning and thinning on height and girth increment in holm oak coppices (Quercus ilex L.). Vegetatio 99-100: 365–376.Google Scholar
  17. Fernandez Alés R., Laffarga J.M. and Ortega F. 1993. Strategies in Mediterranean grassland annuals in relation to stress and disturbance. J. Veg. Sci. 4: 313–322.Google Scholar
  18. Floret C., Galan M.J., Le Floc´h E. and Romane F. 1992. Dynamics of holm oak (Quercus ilex L.) coppices after clearcutting in southern France. Flora and life cycles changes. Vegetatio 99-100: 97–105.Google Scholar
  19. GomezSal A., De Miguel J.M., Casado M.A. and Pineda F.D. 1986. Successional changes in the morphology and ecological responses of a grazed pasture ecosystem in Central Spain. Vegetatio 67: 33–44.Google Scholar
  20. Graetz R.D. and Tongway D.J. 1986. Influence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrubland. Austr. J. Ecol. 11: 347–360.Google Scholar
  21. Hensen I. 1995. Die Vegetation von Polylepis-Wäldern der Ostkordillere Boliviens. Phytocoenologia 25: 235–277.Google Scholar
  22. Hensen I. 2002. Impacts of anthropogenic influence on the vegetation of Polylepis woodlands in the region of Cochabamba/Bolivia. Ecotropica 8: 183–203.Google Scholar
  23. Hunt L.P. 2001. Low seed availability may limit recruitment in grazed Atriplex vesicaria and contribute to its local extinction. Plant Ecol. 157: 53–67.Google Scholar
  24. Ibañez J.J., Lledó M.J., Sánchez R. and Roda F. 1999. Stand structure, aboveground biomass and production. In: Rodà F., Retana J., Gracia C.A. and Bellot J. (Eds.), Ecology of Mediterranean Evergreen Oak Forests. Ecol. Stud. 137. Springer Verlag, Berlin, Heidelberg, pp. 31–45.Google Scholar
  25. ICONA Ministerio de Agricultura Pesca y Alimentación 1990. Mapa forestal de España. Escala 1:200.000. Hoja 6-11: Almería. Madrid.Google Scholar
  26. Joffre R., Rambal S. and Ratte J.P. 1999. The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor. Systems 45: 57–79.Google Scholar
  27. Keeley J.E. 1992. Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology 73: 1194–1208.Google Scholar
  28. Keeley J.E. 1998. Coupling demography, physiology and evolution in Chaparral Shrubs. In: Rundel P.W., Montenegro G. and Jaksic F.M. (Eds.), Landscape Disturbance and Biodiversity of Mediterranean-type Ecosystems. Ecol. Stud. 136. Springer Verlag, Berlin, Heidelberg, pp. 257–264.Google Scholar
  29. Kerley G.I. and Whitford W.G. 2000. Impact of grazing and desertification in the Chihuahuan Desert. Plant community, granivores and granivory. Amer. Midl. Nat. 144: 78–91.Google Scholar
  30. Kramer H. and Akca A. 1995. Leitfaden zurWaldmeßlehre. 3. Aufl. J. D. Sauerländer´s Verlag, Frankfurt a. M.Google Scholar
  31. Leiva M.J. and Ales R.F. 2000. Effect of grazing on the population of Phalaris aquatica. J. Rangel. Manag. 53: 277–281.Google Scholar
  32. Li J. and Romane F.J. 1997. Effects of germination inhibition on the dynamics of Quercus ilex stands. J. Veg. Sci. 8: 287–294.Google Scholar
  33. Michaud H., Lumaret R. and Romane F. 1992. Variation in the genetic structure and reproductive biology of holm oak populations. Vegetatio 99-100: 107–113.Google Scholar
  34. Obeso J.R. 1993. Does defoliation affect reproductive output in herbaceous and woody plants in different ways? Funct. Ecol. 7: 150–155.Google Scholar
  35. Retana J., Riba M., Castell C. and Espelta J.M. 1992. Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning. Vegetatio 99-100: 355–364.Google Scholar
  36. Retana J., Espelta J.M., Gracia M. and Riba M. 1999. Seedling Recruitment. In: Rodà F., Retana J., Gracia C.A. and Bellot J. (Eds.), Ecology of Mediterranean Evergreen Oak Forests. Ecol. Stud. 137. Springer Verlag, Berlin, Heidelberg, pp. 89–103.Google Scholar
  37. Robles A.B. 1990. Evaluación de la oferta forrajera y capacidad sustentadora de un agrosistema semiárido del sureste Ibérico. Ph.D. Thesis, University of Granada, Spain.Google Scholar
  38. Santos T. and Tellería J.L. 1997. Vertebrate predation on holm oak, Quercus ilex, acorns in a fragmented habitat: effects on seedling recruitment. For. Ecol. Manag. 98: 181–187.Google Scholar
  39. Siscart D., Diego V. and Lloret F. 1999. Acorn Ecology. In: Rodà F., Retana J., Gracia C.A. and Bellot J. (Eds.), Ecology of Mediterranean Evergreen Oak Forests. Ecol. Stud. 137. Springer Verlag, Berlin, Heidelberg, pp. 75–87.Google Scholar
  40. Terradas J. 1999. Holm oak and holm oak forests: An introduction. In: Rodà F., Retana J., Gracia C.A. and Bellot J. (Eds.), Ecology of Mediterranean Evergreen Oak Forests. Ecol. Stud. 137. Springer Verlag, Berlin, Heidelberg, pp. 3–14.Google Scholar
  41. Wilmanns O. and Müller K. 1977. Zum Einfluß der Schaf-und Ziegenbeweidung auf die Vegetation im Schwarzwald. In: Tüxen R. (Ed.), Vegetation und Fauna. Ber. Int. Symp. IVV Rinteln. J. Cramer Verlag, Vaduz, pp. 465–479.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute for Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations