Ukrainian Mathematical Journal

, Volume 55, Issue 7, pp 1119–1130 | Cite as

On One Sequence of Polynomials and the Radius of Convergence of Its Poisson–Abel Sum

  • A. M. Samoilenko


For one sequence of polynomials arising in the construction of the numerical-analytic method for finding periodic solutions of nonlinear differential equations, we determine the explicit form of the Poisson–Abel sum and the exact solution of the equation for finding the radius of convergence of this sum.


Differential Equation Exact Solution Periodic Solution Explicit Form Nonlinear Differential Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Samoilenko, “Numerical-analytic method for investigation of periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh., 17, No. 4, 82–93 (1965).Google Scholar
  2. 2.
    A. M. Samoilenko, “Numerical-analytic method for investigation of periodic systems of ordinary differential equations. II,” Ukr. Mat. Zh., 18, No. 2, 50–59 (1966).Google Scholar
  3. 3.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for Investigation of Periodic Solutions [in Russian], Vyshcha Shkola, Kiev (1976).Google Scholar
  4. 4.
    A. M. Samoilenko and V. N. Laptinskii, “On estimates for periodic solutions of differential equations,” Dokl. Akad. Nauk Ukr.SSR, Ser. A, No. 1, 30–32 (1982).Google Scholar
  5. 5.
    M. G. Krein and M. A. Rutman, “Linear operators preserving an invariant cone in a Banach space,” Usp. Mat. Nauk, 3, Issue 1, 3 - 95 (1948).Google Scholar
  6. 6.
    N. A. Evkhuta and P. P. Zabreiko, “On the Samoilenko method for determination of periodic solutions of quasilinear differential equations in a Banach space,” Ukr. Mat. Zh., 37, No. 2, 162–168 (1985).Google Scholar
  7. 7.
    N. A. Evkhuta and P. P. Zabreiko, “On the convergence of the Samoilenko method of successive approximations for determination of periodic solutions,” Dokl. Akad. Nauk BSSR, 29, No. 1, 15–18 (1985).Google Scholar
  8. 8.
    E. P. Trofimchuk, “Integral operators of the method of successive periodic approximations,” Mat. Fiz. Nelin. Mekh., Issue 13, 31–36 (1990).Google Scholar
  9. 9.
    M. Kwapisz, “Some remarks on an integral equation arising in applications of numerical-analytic method of solving of boundary value problems,” Ukr. Mat. Zh., 44, No. 1, 128–132 (1992).Google Scholar
  10. 10.
    M. Rontó and J. Meszaros, “Some remarks on the convergence of the numerical-analytic method of successive approximations,” Ukr. Mat. Zh., 48, No. 1, 90–95 (1996).Google Scholar
  11. 11.
    M. Rontó, A. Ronto, and S. I. Trofimchuk, Numerical-Analytic Method for Differential and Difference Equations in Partially Ordered Banach Space, and Some Applications, Preprint No. 02, Univ. Miskolc Inst. Math., Miskolc (1996).Google Scholar
  12. 12.
    I. M. Vinogradov (editor), Mathematical Encyclopedia [in Russian], Vol. 2, Sovetskaya Éntsiklopediya, Moscow (1979).Google Scholar
  13. 13.
    V. P. D'yakonov, Mathematica 4: Educational Course [in Russian], Piter, St. Peterburg (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations