Ukrainian Mathematical Journal

, Volume 55, Issue 5, pp 773–800 | Cite as

Construction of an Integral Manifold of a Multifrequency Oscillation System with Fixed Times of Pulse Action

  • A. M. Samoilenko
  • R. I. Petryshyn
  • T. M. Sopronyuk


We determine a class of multifrequency resonance systems with pulse action for which an integral manifold exists. We construct a function that determines a discontinuous integral manifold and investigate its properties.


Resonance System Oscillation System Pulse Action Integral Manifold Multifrequency Oscillation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  3. 3.
    Yu. A. Mitropol'skii, A. M. Samoilenko, and N. A. Perestyuk, “Averaging method in impulsive systems,” Ukr. Mat. Zh., 37, No. 1, 56–64 (1985).Google Scholar
  4. 4.
    A. M. Samoilenko and R. I. Petryshyn, Multifrequency Oscillations of Nonlinear Systems [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1998).Google Scholar
  5. 5.
    M. N. Astaf'eva, Averaging of Multifrequency Oscillation Systems with Pulse Action [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (1989).Google Scholar
  6. 6.
    Ya. R. Petryshyn, Averaging of Multipoint Problems for Nonlinear Oscillation Systems with Slowly Varying Frequencies [in Ukrainian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (2001).Google Scholar
  7. 7.
    R. I. Petryshyn and T. M. Sopronyuk, “Exponential estimation of the fundamental matrix of a linear impulsive system,” Ukr. Mat. Zh., 53, No. 8, 1101–1109 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  • R. I. Petryshyn
    • 2
  • T. M. Sopronyuk
    • 2
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev
  2. 2.Chernivtsi UniversityChernivtsi

Personalised recommendations