Ukrainian Mathematical Journal

, Volume 55, Issue 4, pp 613–631 | Cite as

Error Estimates for the Averaging Method for Pulse Oscillation Systems

  • A. M. Samoilenko
  • R. I. Petryshyn
  • L. M. Lakusta


We prove new theorems on the justification of the averaging method on a segment and semiaxis in multifrequency oscillation systems with pulse action at fixed times.


Error Estimate Average Method Fixed Time Oscillation System Pulse Action 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Samoilenko, “Averaging method in impulsive systems,” Mat. Fiz., Issue 9, 101-117 (1971).Google Scholar
  2. 2.
    M. N. Astaf'eva, Averaging of Multifrequency Oscillation Systems with Pulse Action [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (1989).Google Scholar
  3. 3.
    Ya. R. Petryshyn, Averaging of Multipoint Problems for Nonlinear Oscillation Systems with Slowly Varying Frequencies [in Ukrainian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (2001).Google Scholar
  4. 4.
    V. I. Arnol'd, Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    M. M. Khapaev, Averaging in Stability Theory [in Russian], Nauka, Moscow (1986).Google Scholar
  6. 6.
    A. M. Samoilenko and R. I. Petryshyn, Multifrequency Oscillations in Nonlinear Systems [In Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1998).Google Scholar
  7. 7.
    A. M. Samoilenko, R. I. Petryshyn, and L. M. Lakusta, “Averaging of boundary-value problems with parameters for multifrequency impulsive systems,” Ukr. Mat. Zh., 54, No. 9, 1241-1253 (2002).Google Scholar
  8. 8.
    R. I. Petryshyn and L. M. Lakusta, “Error estimates for the averaging method in impulsive boundary-value problems with parameters,” Nelin. Kolyvannya, 5, No. 2, 193-207 (2002).Google Scholar
  9. 9.
    R. I. Petryshyn and T. M. Sopronyuk, “Exponential estimate for the fundamental matrix of a linear impulsive system,” Ukr. Mat. Zh., 53, No. 8, 1101-1108 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  • R. I. Petryshyn
    • 2
  • L. M. Lakusta
    • 2
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev
  2. 2.Chernivtsi UniversityChernivtsi

Personalised recommendations