Tribology Letters

, Volume 17, Issue 2, pp 169–177 | Cite as

Tribological Properties of Langmuir–Blodgett Films on Silicon Surface in Microscale Sliding Contact

Article

Abstract

Microtribological properties of Langmuir–Blodgett (LB) films transferred from behenic acid (BehA), 2,4-heneicosanedione (HD) and its copper complex ((HD)2Cu) onto silicon surface were examined. To better understand the wear resistance performance of these LB monolayers, a comparison was made with a chemically grafted octadecyltrichlorosilane (OTS) monolayer. Auger electron spectroscopy (AES) was used for identification of the chemical composition of the monolayers, worn areas and counterpart surfaces. We observed that the studied LB films in microscale sliding contact exhibited stable friction properties comparable to OTS, and better wear performance than OTS at high contact pressure. The tribological properties of these LB monolayers were explained in terms of molecular packing density and molecular transfer to the counterpart surface. The relationship between the wear resistance of the studied LB films and the degree of molecular packing of the surfactants indicated that the wear properties of the LB films are strongly associated with the degree of molecular packing. We suggest that the steady low friction and high wear resistance of the BehA monolayer may partly be attributed to the transfer of the amphiphilic molecules to the counterpart surface in the contact region.

behenic acid monolayer self-assembled monolayer boundary lubricants friction wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.C. Tai and R.S. Muller, Sensors. Acuat. A21 (1990) 180.Google Scholar
  2. 2.
    R. Maboudian, W.R. Ashurst and C. Carraro, Tribol. Lett. 12 (2002) 95.Google Scholar
  3. 3.
    B. Bhushan and B.K. Gupta, Handbook of Tribology: Materials, Coatings and Surface Treatment (McGraw-Hill, New York, 1991).Google Scholar
  4. 4.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edn. (Springer, Heidelberg, 2000).Google Scholar
  5. 5.
    B. Bhushan, Micro/Nanotribology and its Application. (Kluwer, Dordrecht, 1997).Google Scholar
  6. 6.
    J.N. Glosli and G.M. McCelland, Phys. Rev. Lett. 70 (1993) 1960.Google Scholar
  7. 7.
    K.J. Tupper and D.W. Brenner, Thin Solid Films 253 (1994) 185.Google Scholar
  8. 8.
    J. Klein, D. Perhia and S. Warburg, Nature 352 (1991) 143.Google Scholar
  9. 9.
    A.B. Tutein, S.J. Stuart and J.A. Harrison, J. Phys. Chem. 103 (1999) 11357.Google Scholar
  10. 10.
    S. Lee, Y.-S. Shon, T. Randall Lee and S.S. Perry, Thin Solid Films 358 (2000) 152.Google Scholar
  11. 11.
    J. Choi, M. Kawaguchi and T. Kato, J. Appl. Phys. 91 (2002) 7574.Google Scholar
  12. 12.
    X. Xiao, J. Hu, D.H. Charych and M. Salmeron, Langmuir 12 (1996) 235.Google Scholar
  13. 13.
    F. Tian, X. Xiao and M.M.T. Loy, Langmuir 15 (1999) 244.Google Scholar
  14. 14.
    V.V. Tsukruk, H.-S. Ahn, D.-I. Kim and A. Sidorenko, Appl. Phys. Lett. 80 (2002) 4825.Google Scholar
  15. 15.
    B.J. Briscoe and D.C. Evans, Proc. R. Soc. A 380 (1981) 389.Google Scholar
  16. 16.
    V.N. Bliznyuk, M.P. Everson and V.V. Tsukruk, J. Tribol. 120 (1990) 489.Google Scholar
  17. 17.
    E. Meyer, R. Overney, D. Brodbeck, L. Howald, R. Lüthi, J. Frommer and H.-J. Güntherodt, Phys. Rev. Lett. 69 (1992) 1777.Google Scholar
  18. 18.
    P. Zhang, Q. Xue, Z. Du and Z. Zhang, Wear 242 (2000) 147.Google Scholar
  19. 19.
    A. Chaney and M.J. Astle, J. Org. Chem. 16 (1951) 57.Google Scholar
  20. 20.
    H. Wide, G. Mann and U. Burkhardt, J. Pract. Chem. 321 (1979) 495.Google Scholar
  21. 21.
    V.E. Agabekov, G.K. Zhavnerko, V.S. Staroverov, B. Bar and H.-J. Cantow, Acta Phys. Pol. A 93 (1998) 383.Google Scholar
  22. 22.
    H.-S. Ahn, C.-H. Kim, S.A. Chizhik, O.Y. Komkov and A.M. Dubravin, USA Patent pending (09/853,763), 2001.Google Scholar
  23. 23.
    Y. Oishi, T. Kasagi, M. Kuramori and K. Suehiro, Colloids Surf. A 169 (2000) 171.Google Scholar
  24. 24.
    A.N. Parikh, D.L. Allara, I.B. Azouz and F. Rondelez, J. Phys. Chem. 98 (1994) 7577.Google Scholar
  25. 25.
    D. Julthongpiput, H.-S. Ahn, D.-I. Kim and V.V. Tsukruk, Tribol. Lett. 13 (2002) 35.Google Scholar
  26. 26.
    T.E. Karis. Tribol. Lett. 3 (1997) 1.Google Scholar
  27. 27.
    J.E. Houston and H.I. Kim, Acc. Chem. Res. 35 (2002) 547.Google Scholar
  28. 28.
    R.C. Major, H.I. Kim, J.E. Houston and X.-Y. Zhu, Tribol. Lett. 14 (2003) 237.Google Scholar
  29. 29.
    P.T. Mikulski and J.A. Harrison, J. Am. Chem. Soc. 123 (2001) 6873.Google Scholar
  30. 30.
    A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press, San Diego, 1991).Google Scholar
  31. 31.
    V.V. Tsukruk, Adv. Mater. 13 (2001) 95.Google Scholar
  32. 32.
    V. Novotny and D. Swalen, Langmuir 5 (1989) 485.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • D.-I. Kim
    • 1
  • G.K. Zhavnerko
    • 2
  • H.-S. Ahn
    • 1
  • D.-H. Choi
    • 3
  1. 1.Tribology Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.New Materials Chemistry InstituteBelarus National Academy of SciencesMinskBelarus
  3. 3.School of Mechanical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations