Tribology Letters

, Volume 16, Issue 4, pp 283–289 | Cite as

The Effect of Surface-Active Phospholipids on the Lubrication of Osteoarthritic Sheep Knee Joints: Friction

  • H.E. Ozturk
  • K.K. Stoffel
  • C.F. Jones
  • G.W. Stachowiak
Article

Abstract

The synovial fluid aspirate from human joints that have experienced serious traumatic injury has been shown to have lower concentrations of phospholipids when compared with healthy joints. Previous studies provide evidence that synovial fluid constituents, specifically dipalmitoyl phosphatidylcholine (Lα-DPPC), are highly surface active, capable of rapidly depositing a layer of phospholipids onto glass. Such research has demonstrated that the adsorbed surface layers of synovial surfactant are excellent lubricants in vitro, significantly reducing the coefficient of friction under physiological loading in human knee joints. This study aimed to investigate the effect of concentration of Lα-DPPC lubricant solutions on the coefficient of friction of worn articular cartilage on steel. A pin-on-disc apparatus was used to measure the coefficient of friction of sheep-knee articular cartilage on steel under unidirectional sliding at physiological conditions of load and speed. Concentrations of Lα-DPPC solution between 100 times less and 100 times more than is normally present in synovial fluid were tested. All specimens were tested following a period of unlubricated induced wear. Trials were carried out at ambient temperature and between 33–37°C (representative of in vivo joint temperature). Friction measurement results demonstrated a reduction in the coefficient of friction of worn articular cartilage against steel with increasing concentrations of Lα-DPPC in lubricant solution.

Articular cartilage osteoarthritis friction Lα-DPPC wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.L. Graindorge and G.W. Stachowiak, Wear 241 (2000) 143.Google Scholar
  2. [2]
    S.A.V. Swanson, in Adult Articular Cartilage (2nd edn.), M.A.R. Freeman, (ed). (Pitman Medical, London, 1979) p. 415.Google Scholar
  3. [3]
    G.W. Stachowiak, A.W. Batchelor and L.J. Griffiths, Wear 171 (1994) 135.Google Scholar
  4. [4]
    J.L. Rabinowitz, J.R. Gregg and J.E. Nixon, Clin. Ortho. and Rel. Res. 190 (1984) 292.Google Scholar
  5. [5]
    B.A. Hills, Proc. Instn. Mech. Engrs, Part H 214 (2000) 83.Google Scholar
  6. [6]
    B.A. Hills and M.K. Monds, British Soc. Rheumat. 37 (1998) 143.Google Scholar
  7. [7]
    P.F. Williams, G.L. Powell and M. LaBerge, Proc. Instn. Mech. Engrs, Part H, 207 (1993) 59.Google Scholar
  8. [8]
    P.F. Williams III, I. Iwasaki, K. Ishihara, G.L. Powell, J.A. Gillbert, N. Nakabayashi and M. LaBerge, Proc. Instn. Mech. Engrs, Part H, 211 (1997) 359.Google Scholar
  9. [9]
    B. Purbach, B.A. Hills, M. Wroblewski, Clin. Ortho. 396 (2002) 115.Google Scholar
  10. [10]
    P. Vecchio, R. Thomas and B.A. Hills, British Soc. Rheumatology 38 (1999) 1020.Google Scholar
  11. [11]
    B.A. Hills, J. Rheumatology 16 (1989) 82.Google Scholar
  12. [12]
    V. Saikko and T. Ahlroos, Wear 207 (1997) 86–91.Google Scholar
  13. [13]
    H. Higaki, T. Murakami, Y. Nakanishi, H. Miura, Mawatari, T. and Y. Iwamoto, Proc. Instn. Mech. Engrs, Part H, 212 (1998) 337.Google Scholar
  14. [14]
    J. Rogers Foy, P.F. Williams III, G.L. Powell, K. Ishihara, N. Nakabayashi and M. LaBerge, Proc. Instn. Mech. Engrs, Part H, 213 (1999) 5.Google Scholar
  15. [15]
    I.M. Schwarz and B.A. Hills, British Soc. Rheumatology 37 (1998) 21.Google Scholar
  16. [16]
    H. Forster and J. Fisher, Proc. Instn. Mech. Engrs, Part H, J. Eng. Med. 210 (1996) 109.Google Scholar
  17. [17]
    Z.M. Jin, J.E. Pickard, H. Forster, E. Ingham and J. Fisher, Biorheology 37 (2000) 57.Google Scholar
  18. [18]
    H. Forster and J. Fisher, Proc. Instn. Engrs, Part H, 213 (1999) 329.Google Scholar
  19. [19]
    J.L. Rabinowitz, J.R. Gregg, J.E. Nixon and R. Schumacher, Clin. Orthopaedics Rel. Res. 143 (1979) 260.Google Scholar
  20. [20]
    B.J. Hamrock and D. Dowson, J. Lubr. 100 (1978) 236.Google Scholar
  21. [21]
    A.C. Swann and B.B. Seedhom, J. Eng. Med. 203 (1989) 143.Google Scholar
  22. [22]
    J.E. Shigley, Mechanical Engineering Design, (McGraw-Hill, Singapore, 1986).Google Scholar
  23. [23]
    Bhushan, B., Modern Tribology Handbook, 1, 2001 54 (CRC Press, Boca Raton).Google Scholar
  24. [24]
    T. Macirowski, S. Tepic and R.W. Mann, Trans. ASME 116 (1994) 10.Google Scholar
  25. [25]
    H. Forster and J. Fisher, Proc. Instn. Mech. Engrs, Part H, Engineering in Medicine 213 (1999) 329.Google Scholar
  26. [26]
    S.L. Graindorge and G.W. Stachowiak, Jap. Soc. Tribol. (2001).Google Scholar
  27. [27]
    T.B. Kirk, A.S. Wilson and G.W. Stachowiak, J. Ortho Rheumatology 6 (1993) 21.Google Scholar
  28. [28]
    A.W. Batchelor and G.W. Stachowiak, J. Ortho. Rheumatology 9 (1996) 11.Google Scholar
  29. [29]
    J.B. Medley, R.M. Pilliar, E.W. Wong and A.B. Strong, Eng. Med. 9 (1980) 59.Google Scholar
  30. [30]
    G.W. Stachowiak and A.W. Batchelor, Engineering Tribology (2nd edn.) (Butterworth-Heinemann, Boston, 2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • H.E. Ozturk
    • 1
  • K.K. Stoffel
    • 2
  • C.F. Jones
    • 1
  • G.W. Stachowiak
    • 2
  1. 1.School of Mechanical EngineeringThe University of Western AustraliaNedlandsWestern Australia, Australia
  2. 2.Tribology LaboratoryUWA. OrthopädieSt. GallenSwitzerland

Personalised recommendations