Tribology Letters

, Volume 16, Issue 1–2, pp 107–112 | Cite as

Evaluation of Nanoscale Friction Depth Distribution in ZDDP and MoDTC Tribochemical Reacted Films Using a Nanoscratch Method

  • Jiping YeEmail author
  • M. Kano
  • Y. Yasuda


The distributions of local friction coefficients relative to the depth and near the surface of MoDTC/ZDDP and ZDDP tribofilms were successfully evaluated by using a nanoscratch method combined with in situ AFM observation. It was found that both tribofilms were friction-functionally graded materials. The friction coefficients decreased from 0.35 to 0.16 with a decrease in the scratch depth from 60 to 10 nm. It was observed that the MoDTC/ZDDP and ZDDP tribofilms possessed different shear strength levels near the surface as evidenced by the different valley-shaped friction coefficient distributions they exhibited for scratch depths ranging from 2 to 10 nm. Based on our recent nanomechanical measurements, this observation indicated that both tribofilms possessed an ultra-low friction inner skin layer at a depth of about 10 nm below the surface. Most importantly, the inner skin layer of the MoDTC/ZDDP tribofilm possessed a lower friction coefficient than that of the ZDDP tribofilm (0.084 versus 0.104) and was thinner (about 3.2 nm versus 6.4 nm). These results thus revealed that the reduction in friction attributed to the MoDTC additive originates from the different friction behavior of the inner skin layers of the MoDTC/ZDDP and ZDDP tribofilms. These nanoscratch results agree with the findings of our recent work on detecting differences in mechanical properties between these tribofilms by nanoindentation measurements.

ZDDP MoDTC friction coefficient inner skin layer and nanoscratch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Isoyama and T. Sakurai, Tribol. Int. 7 (1974) 151.Google Scholar
  2. [2]
    J.B. Retzloff, B.T. Davis and J.M. Pietras, Lub. Eng. 35 (1979) 568.Google Scholar
  3. [3]
    P. Zheng, X. Han and R. Wang, STLE Trans. 31 (1986) 22.Google Scholar
  4. [4]
    Y. Yamamoto and S. Gondo, Wear 112 (1986) 79.Google Scholar
  5. [5]
    Y. Yamamoto and S. Gondo, Tribol. Trans. 32 (1989) 251.Google Scholar
  6. [6]
    H. Spedding and R.C. Watkins, Tribol. Int. 15 (1982) 9.Google Scholar
  7. [7]
    P.A. Willermet, D.P. Dailey, R.O. Carter III, P.J. Schmitz and W. Zhu, Tribol. Int. 28 (1995) 177.Google Scholar
  8. [8]
    K. Kubo, M. Kibukawa and Y. Shimakawa, IMEchE, C 68/85 (1985) 121.Google Scholar
  9. [9]
    M. Kano, Y. Yasuda and J. Ye, in: Proc. 2nd World Tribol. Congress, Vienna, 2001 (ATS, 2001) 342.Google Scholar
  10. [10]
    I. Feng, W. I. Perilstein and M. R. Adams, ASLE Trans. 6 (1963) 60.Google Scholar
  11. [11]
    H. Isoyama and T. Sakurai, Tribol. Int. 7 (1974) 51.Google Scholar
  12. [12]
    S. Gondo and M. Konishi, Wear 120 (1987) 51.Google Scholar
  13. [13]
    S. Korcek, R. Jensen, M. Johnson and E. Clausing, in: Proc. Int. Tribol. Conference, Yokohama, 1995 (JST, Tokyo, 1996) p. 733.Google Scholar
  14. [14]
    M. Muraki, Y. Yanagi and K. Sakaguchi, Tribol. Int. 30 (1996) 69.Google Scholar
  15. [15]
    J.M. Martin, J.L. Mansot, I. Berbezier and M. Belin, Wear 197 (1996) 335.Google Scholar
  16. [16]
    M. Kasrai, J.N. Cutler, K. Gore, G. Canning, G.M. Bancroft and K.H. Tan, Tribol. Trans. 41 (1998) 69.Google Scholar
  17. [17]
    C. Grossiord, K. Varlot, J.M. Martin, T. Le Mogne, C. Esnouf and K. Inoue, Tribol. Int. 31 (1998) 737.Google Scholar
  18. [18]
    C. Grossiord, J.M. Martin, T. Le Mogne, K. Inoue and J. Igarashi, J. Vac. Sci. Technol. A 17 (1999) 884.Google Scholar
  19. [19]
    C. Grossiord, J.M. Martin, K. Varlot, B. Vacher, T. Le Mogne and Y. Yamada, Tribol. Lett. 8 (2000) 203.Google Scholar
  20. [20]
    Z. Yin, M. Kasrai, G.M. Bancroft, K.F. Laycock and K.H. Tan, Tribol. Int. 26 (1993) 383.Google Scholar
  21. [21]
    M. Fuller, Z. Yin, M. Kasrai, G.H. Bancroft, K.F. Laycock and K.H. Tan, in: Proc. Int. Tribol. Conference, Yokohama, 1995 (JST, Tokyo, 1996) p. 113.Google Scholar
  22. [22]
    J. Ye, M. Kano and Y. Yasuda, Tribol. Lett. 13 (2002) 41.Google Scholar
  23. [23]
    O.L. Warren, J.F. Graham, P.R. Norton, J.E. Houston and T.A. Milchaske, Tribol. Lett. 4 (1998) 189.Google Scholar
  24. [24]
    J.F. Graham, C. McCague and P.R. Norton, Tribol. Lett. 6 (1999) 149.Google Scholar
  25. [25]
    S. Bec and A. Tonck, in: Third Body Concept: Interpretation of Tribological Phenomena, Proceeding of the 22nd Leeds–Lyon Symposium, Lyon, France, 5–8 September 1995.Google Scholar
  26. [26]
    S. Bec, A. Tonck and J.M. Georges, R.C. Coy, J.C. Bell and G.W. Roper, Proc. R. Soc. Lond. A 455 (1999) 4181.Google Scholar
  27. [27]
    M. Aktary, M.T. McDermott and G.A. McAlpine, Tribol. Lett. 12 (2002) 155.Google Scholar
  28. [28]
    S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd edn, (McGraw-Hill Book Company, Inc., New York, 1970).Google Scholar
  29. [29]
    D. Tabor, Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
  30. [30]
    J. Ye, M. Kano and Y. Yasuda, in: Proc. 2nd Word Tribol. Congress, Vienna, 2001 (ATS, 2001) p. 315.Google Scholar
  31. [31]
    J. Ye, M. Kano and Y. Yasuda, Tribotest 9 (2002) 13.Google Scholar
  32. [32]
    K.D. Bronsema, J.L. DeBoer and F. Jellinek, Z. Anorg. Allg. Chem. 540 (1986) 15.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Research DepartmentNissan Arc Ltd.YokosukaJapan
  2. 2.Materials Research LaboratoryNissan Motor Company, Ltd.YokosukaJapan

Personalised recommendations