Topics in Catalysis

, Volume 26, Issue 1–4, pp 73–85 | Cite as

Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts

  • Hans Schulz
Article

Abstract

Minor reactions, accompanying the major reactions for building straight-chains of aliphatic hydrocarbons from the reactants CO and H2 on the surface of cobalt catalysts, can contribute substantially to the understanding of the regime of Fischer–Tropsch synthesis. This goal affords precise mass balances, precise determination of product composition and consistent kinetic schemes for obtaining the right kinetic coefficients. The concept of self-organization of the Fischer–Tropsch regime is established from time dependence of activity, selectivity and catalyst structure. A process of thermodynamically controlled restructuring/segregation of the cobalt surface is addressed and understood as activating the catalyst and specifically, disproportionating on-plane sites into sites of lower coordination (on-top sites) and higher coordination (in-hole sites). These different sites appear to collaborate in the Fischer–Tropsch regime, with steps of coordination chemistry (comparable to those of transition metal complexes) on on-top sites and dissociation (specifically of CO) on in-hole sites and further in principle suppressed reactions on on-plane sites. This concept is developed and illustrated here with the results of several investigations such as tracing of activity and selectivity during the initial episodes of synthesis, experiments with added (14C-labeled) olefins and variation of synthesis parameters to see their specific influences. As minor reactions of coordination chemistry on on-top sites, reversible CH2 cleavage from alkyl chains, CO insertion and ethene insertion are visualized. On on-plane sites CO methanation, olefin hydrogenation and olefin double bond shift are noticed, but much inhibited.

As compared to Fischer–Tropsch on iron catalysts, the common Fischer–Tropsch principle appears to be the inhibition of chain desorption to allow for growth reactions of the adsorbed chains. Minor reactions and detailed kinetics on iron and cobalt catalysts differ basically.

Fischer–Tropsch cobalt catalysts basic reactions selforganization catalyst construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.F.G. Herington, Chem. Ind. 65 (1946) 346.Google Scholar
  2. [2]
    R.A. Friedel and R.B. Anderson, J. Am. Chem. Soc. 72 (1950) 1212, 2307.Google Scholar
  3. [3]
    H. Schulz, K. Beck and E. Erich, Stud. Surf. Sci. Catal. 36 (1988) 457.Google Scholar
  4. [4]
    H. Schulz and Zh. Nie, Stud. Surf. Sci. Catal. 136 (2001) 159.Google Scholar
  5. [5]
    H. Schulz, Zh. Nie and F. Ousmanov, Catal. Today, 71 (2002) 351.Google Scholar
  6. [6]
    Zh. Nie, Dissertation (University Karlsruhe, Karlsruhe, 1997).Google Scholar
  7. [7]
    H. Schulz, E. van Steen and M. Claeys, Stud. Surf. Sci. Catal. 81 (1994) 455.Google Scholar
  8. [8]
    H. Pichler, Adv. Catal. 4 (1952) 271.Google Scholar
  9. [9]
    H.H. Storch, N. Golumbic and R.B. Anderson, The Fischer-Tropsch and Related Syntheses.Google Scholar
  10. [10]
    F. Fischer and H. Koch, Brennstoff-Chemie 13 (1932) 61.Google Scholar
  11. [11]
    H. Schulz, Zh. Nie, and F. Ousmanov, Catal. Today, 71 (2002) 351.Google Scholar
  12. [12]
    M. CLaeys, Dissertation (University Karlsruhe, Karlsruhe, 1997).Google Scholar
  13. [13]
    H. Schulz, K. Beck and E. Erich, Fuel Process. Technol. 18 (1988) 293.Google Scholar
  14. [14]
    H. Schulz, K. Beck and E. Erich, in Proc. 9th Int. Congr. on Catalysis, Calgary, M. Phillips and M. Ternan (eds), Vol. 2 (The Chemical Institute of Canada, Ottawa, 1988) p. 829.Google Scholar
  15. [15]
    H. Schulz, E. van Steen and M. Claeys, Top. Catal. 2 (1995) 223.Google Scholar
  16. [16]
    H. Schulz, C1-Mol. Chem. 1 (1985) 231.Google Scholar
  17. [17]
    H. Schulz, E. van Steen and M. Claeys, Proc. DGMK-Conf. Selective Hydrogenations and Dehydrogenations, 11-12 November 1993, Kassel (DGMK, Hamburg, 1993) p. 139.Google Scholar
  18. [18]
    H. Schulz and H. Goekcebay, in Catalysis of Organic Reactions, J.R. Kosak (ed.) (Marcel Dekker, New York, 1984) p. 153.Google Scholar
  19. [19]
    G.A. Somorjai, K.S. Hwang and J.S. Parker, Top. Catal. this issue.Google Scholar
  20. [20]
    J.H. Wilson and G.P.M. de Groot, J. Phys. Chem. 99 (1995) 7860.Google Scholar
  21. [21]
    J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, H.P.C.E. Kuipers, A. Hoek and H.M. Huisman Appl. Catal., A: Gen. 186 (1999) 27.Google Scholar
  22. [22]
    H. Pichler and H. Buffleb, Brennstoff-Chemie 21 (1940) 273.Google Scholar
  23. [23]
    H. Pichler and H. Schulz, Chem.-Ing.-Tech. 42 (1970) 1162.Google Scholar
  24. [24]
    H. Pichler, personal communication.Google Scholar
  25. [25]
    H. Schulz, M. Claeys and S. Harms, Stud. Surf. Sci. Catal. 107 (1997) 193.Google Scholar
  26. [26]
    P. Albers, H. Angert, G. Prescher, K. Seybold and St. Parker, Chem. Commun. (1999) 1619.Google Scholar
  27. [27]
    C.S. Kellner and A.T. Bell, J. Catal. 70 (1981) 418.Google Scholar
  28. [28]
    H. Schulz and M. Claeys, Appl. Catal., A: Gen. 186 (1999) 91.Google Scholar
  29. [29]
    F. Fischer and H. Tropsch, Brennstoff-Chemie 7 (1926) 97.Google Scholar
  30. [30]
    P. Biloen, J.N. Helle and W.M.H. Sachtler, J. Catal. 58 (1979) 95.Google Scholar
  31. [31]
    A.T. Bell, Catal. Rev.-Sci. Eng. 23 (1981) 203.Google Scholar
  32. [32]
    P. Winslow and A.T. Bell, J. Catal. 91 (1985) 142.Google Scholar
  33. [33]
    S. Roginski, Proc. 3rd Congr. on Catalysis (Amsterdam, 1965) p. 939.Google Scholar
  34. [34]
    A. Sternberg and I. Wender, Proc. Intern. Conf. Coordination Chem., London (The Chemical Society, London, 1959) p. 53.Google Scholar
  35. [35]
    Y.T. Eidus, Russ. Chem. Rev. 36(5) (1967) 338.Google Scholar
  36. [36]
    H. Schulz and H.D. Achtsnit, Revista Portuguesa de Quimica (1977) 317.Google Scholar
  37. [37]
    V. Ponec, W.L. van Dijk and J.A. Groenewegen, J. Catal. 45 (1976) 277.Google Scholar
  38. [38]
    A. Behr, Organometallic Complexes and Homogeneous Catalysis, Ullmann's Encyclopedia of Industrial Chemistry, 6th ed. Vol. 24 (Wiley-VHC, Weinheim, 2003) p. 429.Google Scholar
  39. [39]
    H. Schulz and M. Claeys, Appl. Catal., A: Gen. 186 (1999) 71.Google Scholar
  40. [40]
    E. Iglesia, S.C. Reyes and R.J. Madon, J. Catal. 129 (1991) 238.Google Scholar
  41. [41]
    S. Roesch, Dissertation (Universitaet Karlsruhe, Karlsruhe, 1980).Google Scholar
  42. [42]
    H. Schulz and Zh. Nie, Stud. Surf. Sci. Catal. 130 (2000) 1145.Google Scholar
  43. [43]
    E. van Steen and H. Schulz, Appl. Catal., A: Gen. 186 (1999) 309.Google Scholar
  44. [44]
    R.B. Anderson, The Fischer-Tropsch Synthesis (Academic Press Inc., New York, 1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Hans Schulz
    • 1
  1. 1.Engler-Bunte InstituteUniversity of KarlsruheKarlsruheGermany

Personalised recommendations