Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 77, Issue 3, pp 231–243 | Cite as

Use of Tissue Culture and Biotechnology for the Genetic Improvement of Watermelon

  • Michael E. ComptonEmail author
  • D.J. Gray
  • Victor P. Gaba
Article

Abstract

Watermelon is an important vegetable crop world-wide with over 81 million metric tons produced annually. Despite these high production figures, million of metric tons of fruit are lost in fields to disease. Genetic improvement through tissue culture and biotechnology offer potential routes of improving fruit harvest by offering higher quality products, like seedless fruit, or by introducing recombinant genes or generating somaclonal variants with improved resistance to biotic or abiotic stresses. The purpose of this review is to highlight how tissue culture and biotechnology have been used for the genetic improvement of watermelon and provide suggestions for future application of these methods to facilitate further genetic improvement.

Agrobacterium tumefaciens Citrullus lanatus plant breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelberg J & Rhodes BB (1989) Micropropagation from zygotic tissues of watermelon. In: Thomas CE (ed) Proceedings of Cucurbitaceae 89: Evaluation and Enhancement of Cucurbit Germplasm (pp. 110–112). USDA/ARSGoogle Scholar
  2. Alper Y, Adelberg JW, Young RE & Rhodes BB (1994a) Unitized, nonselective cutting of in vitro watermelon. Trans. ASAE 37: 1331–1336Google Scholar
  3. Alper Y, Young RE, Adelberg JW & Rhodes BB (1994b) Mass handling of watermelon microcuttings. Trans. ASAE 37: 1337–1343Google Scholar
  4. Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP & Biesboer DD (eds) Plant Tissue and Cell Culture (pp. 57–81). Alan R. Liss, Inc.Google Scholar
  5. Andrus CF, Seshadri VS & Grimball C (1971) Production of Seedless Watermelons. Agricultural Research Service, United States Department of Agriculture Technical Bulletin No. 1425Google Scholar
  6. Anghel I & Rosu A (1985) In vitro morphogenesis in diploid, triploid and tetraploid genotypes of watermelon - Citrullus lanatus (Thumb.) Mansf. Rev. Roum. Biol. - Biol. Végét. 30: 43–55Google Scholar
  7. Anonymous (2002) Information Systems for Biotechnology website. Retrieved January 2002 from http://www.isb.vt.edu/cfdocs/ fieldtests1.cfmGoogle Scholar
  8. Anonymous (2003a) Lycopene. Retrieved 22 May 2003 from http://www.lycopene.orgGoogle Scholar
  9. Anonymous (2003b) Fields of green.Watermelon Promotion Board. Retrieved 22 May 2003 from http://www.watermelon.orgGoogle Scholar
  10. Barnes LR (1979) In vitro propagation of watermelon. Sci. Hort. 11: 223–227Google Scholar
  11. Barnes LR, Cochran FD, Mott RL & Henderson WR (1978) Potential uses of micropropagation for cucurbits. Cucubit Genet. Coop. Rep 1: 21–22Google Scholar
  12. Boyhan GJ, Norton D, Jacobsen BJ & Abrahams BR (1992) Evaluation of watermelon and related germplasm for resistance to zucchini yellow mosaic virus. Plant Dis. 76: 251–252Google Scholar
  13. Boyhan GJ, Gudauskas RT, Norton JD & Abrahams BR (1994) Evaluation of watermelon and related germplasm for resistance to the Egyptian strain of zucchini yellow mosaic virus. Plant Dis. 78: 100Google Scholar
  14. Choi PS, Soh WY, Kim YS, Yoo OJ & Liu JR (1994) Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep. 13: 344–348Google Scholar
  15. Clough GH & Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis. 79: 1107–1109Google Scholar
  16. Compton ME (1999) Dark pretreatment improves adventitious shoot organogenesis from cotyledons of diploid watermelon. Plant Cell Tiss. Org. Cult. 58: 185–188Google Scholar
  17. Compton ME (2000) Interaction between explant size and cultivar impacts shoot organogenic competence of watermelon cotyledons. HortScience 35: 749–750Google Scholar
  18. Compton ME & Gray DJ (1992) Micropropagation as a means of rapidly propagating triploid and tetraploid watermelon. Proc. Fla. State Hort. Soc. 105: 352–354Google Scholar
  19. Compton ME & Gray DJ (1993a)Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid and tetraploid watermelon.J. Am. Soc. Hort. Sci. 118: 151–157Google Scholar
  20. Compton ME & Gray DJ (1993b) Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep. 12: 61–65Google Scholar
  21. Compton ME & Gray DJ (1994) Adventitious shoot organogenesis and plant regeneration from cotyledons of tetraploid watermelon. HortScience 29: 211–213Google Scholar
  22. Compton ME & Gray DJ (1999) Shoot organogenesis from watermelon cotyledon explants. In: Trigiano RN & Gray DJ (eds) Plant Tissue Culture Concepts and Laboratory Exercises, 2nd edn (pp. 149–158). CRC Press, Boca Raton, FLGoogle Scholar
  23. Compton ME, Gray DJ & Elmstrom GW (1993a) A simple protocol for micropropagating diploid and tetraploid watermelon using shoot-tip explants. Plant Cell Tiss. Org. Cult. 33: 211–217Google Scholar
  24. Compton ME, Gray DJ, Hiebert E & Lin CM (1993b) Expression of the ?-glucuronidase gene in watermelon cotyledon explants following particle bombardment or infection with Agrobacterium tumefaciens. HortScience 28: 138Google Scholar
  25. Compton ME, Gray DJ & Elmstrom GW (1994a) Regeneration of tetraploid plants from cotyledons of diploid watermelon. Proc. Fla. State. Hort. Soc. 107: 107–109Google Scholar
  26. Compton ME, Gray DJ, Hiebert E & Lin CM (1994b) Microprojectile bombardment prior to co-cultivation with Agrobacterium improves GUS expression in watermelon cotyledons. In Vitro Cell. Dev. Biol. 30A: 62Google Scholar
  27. Compton ME, Gray DJ & Elmstrom GW (1996) Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica 87: 165–172Google Scholar
  28. Compton ME, Barnett N & Gray DJ (1999) Use of fluorescein diacetate (FDA) to determine ploidy of in vitro watermelon shoots. Plant Cell Tiss. Org. Cult. 58: 199–203Google Scholar
  29. Compton ME, Pierson BL & Staub JE (2001) Micropropagation for recovery of Cucumis hystrix. Plant Cell Tiss. Org. Cult. 64: 63–67Google Scholar
  30. Crall JM, Elmstrom GW & McCuistion Jr FT (1994) SSDL: a highquality icebox watermelon breeding line resistant to fusarium wilt and anthracnose. HortScience 29: 707–708Google Scholar
  31. Decoteau DD (2000) Vegetable Crops. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  32. Destefano-Beltran L, Nagpala PG, Cetiner MS, Dodds JH & Jaynes JM (1990) Enhancing bacterial and fungal disease resistance in plants: application to potato. In: Vayda ME & Park WD (eds) The Molecular and Cellular Biology of the Potato (pp. 205–221). CAB International, WallingfordGoogle Scholar
  33. Dong JZ & Jia SR (1991) High efficiency plant regeneration from cotyledons of watermelon (Citrullus vulgaris Schrad.). Plant Cell Rep. 9: 559–562Google Scholar
  34. Elmstrom GW & Maynard DN (1992) Growing Seedless Watermelons. Cooperative Extension Service, University of Fla, Institute of Food and Agricultural Sciences Bulletin HS 687Google Scholar
  35. Fehér T (1993) Watermelon: Citrullus lanatus (Thunb.) Matsum. & Nakai. In: Kalloo G & Bergh BO (eds) Improvement of Vegetable Crops (pp. 295–311). Pergamon Press, OxfordGoogle Scholar
  36. Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD & Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breed. 3: 279–290Google Scholar
  37. Garster H (1997) The potential role of lycopene for human health. J. Am. Coll. Nutr. 16: 109–126Google Scholar
  38. Gillaspie Jr AG & Wright JM (1993) Evaluation of Citrullus sp. germ plasm for resistance to watermelon mosaic virus 2. Plant Dis. 77: 352–354Google Scholar
  39. Gray DJ & Elmstrom GW (1991) Process for the accelerated production of triploid seeds for seedless watermelon cultivars. United States Patent No. 5,007,198Google Scholar
  40. Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrates of Xanthomonas campestris pv. pruni and regeneration of resistant plants. TAG 76: 865–869Google Scholar
  41. Hammerschlag FA (1990) Resistant responses of plants regenerated from peach callus to Xanthomonas campestris pv. pruni. J.Amer. Soc. Hort. Sci. 115: 1034–1037Google Scholar
  42. Huang Y, Nordeen RO, Di M, Owens LD & McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87: 494–499Google Scholar
  43. Jaworski JM & Compton ME (1997) Plant regeneration from cotyledons of five watermelon cultivars. HortScience 32: 469Google Scholar
  44. Jayasankar S & Litz RE (1998) Characterization of embryogenic mango cultures selected for resistance to Colletotrichum gloeosporioides culture filtrate and phytotoxin. Theor. Appl. Genet. 96: 823–831Google Scholar
  45. Jayasankar S, Li Z & Gray DJ (2000) In-vitro selection of Vitis vinifera 'Chardonnay' with Elsinoe ampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta 211: 200–208Google Scholar
  46. Jaynes JM, Xanthopoulos KG, Destefano-Beltran L & Dodds JH (1987) Increasing bacterial disease resistance in plants utilizing antibacterial genes from insects. Bio-Essays 6: 263–270Google Scholar
  47. Kihara H (1951) Triploid watermelons. Proc. Am. Soc. Hort. Sci. 58: 217–230Google Scholar
  48. Liu Q, Ingersoll J, Owens L & Salih S (2001) Response of transgenic royal gala apple (Malus × domestica Borkh) shoots carrying amodified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep. 20: 306–312Google Scholar
  49. Lower RL & Johnson KW (1969) Observations on sterility of induced autotetraploid watermelons. J. Am. Soc. Hort. Sci. 94: 367–369Google Scholar
  50. Lucier G & Lin BH (2001) Factors affecting watermelon consumption in the United States. In: Anonymous (eds) Vegetables and Specialties: Situation and Outlook, VGS-287 (pp. 23–29). USDAERSGoogle Scholar
  51. Marr CW & Gast KLB (1991) Reactions by consumers in a 'farmers' market to prices for seedless watermelon and ratings of eating quality. HortTechnology 1: 105–106Google Scholar
  52. McCuistion G & Elmstrom GW (1993) Identifying polyploids of various cucurbits. Proc. Fla. State Hort. Soc. 106: 155–157Google Scholar
  53. Mohr HC (1986) Watermelon breeding. In: Bassett MJ (ed) Breeding Vegetable Crops (pp. 37–66). AVI Publishing Co., Inc, Westport, CTGoogle Scholar
  54. Moore J (2001). Blot out blotch. Am. Veg. Grower 49: 22–24Google Scholar
  55. Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497Google Scholar
  56. Namba S, Ling K, Gonsalves C, Slightom JL & Gonsalves D (1992) Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus II or zucchini yellow mosaic virus against six potyviruses. Phytopathology 82: 940–946Google Scholar
  57. Provvidenti R (1991) Inheritance of resistance to the Florida strain of zucchini yellow mosaic virus in watermelon. HortScience 26: 407–408Google Scholar
  58. Rane KK & Latin RX (1992) Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis 76: 509–512Google Scholar
  59. Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M & Chang YF (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. & Dev. Biol. Plant 37: 127–132Google Scholar
  60. Scorza R & Hammerschlag FA (1992) Stone fruits. In: Hammerschlag FA & Litz RE (eds) Biotechnology of Perennial Fruit Crops (pp. 277–301). CAB International, WallingfordGoogle Scholar
  61. Singsit C & Ozias-Akins P (1992) Rapid estimation of ploidy levels in in vitro-regenerated interspecific Arachis hybrids and fertile triploids0. Euphytica 64: 183–188Google Scholar
  62. Singsit C & Veilleux (1991) Chloroplast density in guard cells of leaves of anther-derived potato plants grown in vitro and in vivo. HortScience 26: 592–594Google Scholar
  63. Srivastava DR, Andrianov VM & Piruzian ES (1989) Tissue culture and plant regeneration of watermelon (Citrullus vulgaris Schrad. cv. Melitopolski). Plant Cell Rep. 8: 300–302Google Scholar
  64. Swaider JM & Ware GW (2002) Producing Vegetable Crops, 5th edn. Interstate Publishers, Inc., Danville, IllGoogle Scholar
  65. Tricoli DM, Carney KJ, Russell PF, Quemada HD, McMaster RJ, Reynolds JF & Deng RZ (2002) Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. United States Patent No. 6,337,431Google Scholar
  66. Veilleux RE & Johnson AAT (1998) Somaclonal variation: molecular analysis, transformation interaction, and utilization. In:Janick J (ed) Plant Breeding Reviews, Vol. 16 (pp. 229–268). John Wiley & Sons, Inc., New YorkGoogle Scholar
  67. Watts VM (1962) A marked male-sterile mutant in watermelon. J. Am. Soc. Hort. Sci. 81: 498–505Google Scholar
  68. Watts VM (1967) Development of disease resistance and seed production in watermelon stocks carrying the msg gene. J. Am. Soc. Hort. Sci. 91: 579–580Google Scholar
  69. Xia X, Liu Y, Liu W & Chen A (1988) Selection of watermelon (Citrullus vulgaris) male-sterile line G17AB. J. Shenyany Agric. Univ. 19: 9–13Google Scholar
  70. Zhang XP & Rhodes BB (1992) Watermelon variety improvement in China. Cucurbit Genet. Coop. Rep. 15: 76–79Google Scholar
  71. Zhang XP & Wang M (1990) A genetic male-sterile (ms) watermelon from China. Cucurbit Genet. Coop. Rep. 13: 45Google Scholar
  72. Zhang XP, Rhodes BB & Adelberg JW (1994a) Shoot regeneration from immature cotyledons of watermelon. Cucurbit Genet. Coop. Rep. 17: 111–115Google Scholar
  73. Zhang XP, Rhodes BB & Whitesides JF (1994b) Determination of watermelon ploidy level using flow cytometry. Cucurbit Genet. Coop. Rep. 17: 102–105Google Scholar
  74. Zhang XP, Skorupska HT & Rhodes BB (1994c) Cytological expression in the male-sterile ms mutant in watermelon. J. Hered. 85: 279–285Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Michael E. Compton
    • 1
    Email author
  • D.J. Gray
    • 2
  • Victor P. Gaba
    • 3
  1. 1.School of AgricultureUniversity of Wisconsin-PlattevillePlattevilleUSA
  2. 2.Institute of Food and Agricultural SciencesMid-Florida Research and Education Center, University of FloridaApopkaUSA
  3. 3.Department of VirologyInstitute of Plant ProtectionBet DaganIsrael

Personalised recommendations