Advertisement

Theoretical and Mathematical Physics

, Volume 139, Issue 2, pp 609–622 | Cite as

Classification of Integrable Divergent N-Component Evolution Systems

  • A. G. Meshkov
  • V. V. Sokolov
Article

Abstract

We use a symmetry approach to solve the classification problem for integrable N-component evolution systems having the form of conservation laws. We obtain complete lists of both isotropic and anisotropic systems of this type and find auto-Bäcklund transformations with a spectral parameter for all systems.

symmetries Bäcklund transformation evolution equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. G. Meshkov and V. V. Sokolov, Comm. Math. Phys., 232, 1–18 (2002).Google Scholar
  2. 2.
    S. I. Svinolupov and V. V. Sokolov, Theor. Math. Phys., 100, 959–962 (1994); V. V. Sokolov and T. Wolf, J. Phys. A, 34, 11139–11148 (2001).Google Scholar
  3. 3.
    C. Athorne and A. Fordy, J. Phys. A, 20, 1377–1386 (1987); S. I. Svinolupov, Comm. Math. Phys., 143, 559–575 (1992); Theor. Math. Phys., 87, 611–619 (1991); I. T. Habibullin, V. V. Sokolov, and R. I. Yamilov, “Multicomponent integrable systems and non-associative structures,” in: Nonlinear Physics: Theory and Experiment(E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1996), p. 139–168.Google Scholar
  4. 4.
    I. Z. Golubchik and V. V. Sokolov, Theor. Math. Phys., 124, 909–917 (2000).Google Scholar
  5. 5.
    V. É. Adler, A. B. Shabat, and R. I. Yamilov, Theor. Math. Phys., 125, 1603–1661 (2000).Google Scholar
  6. 6.
    F. Calogero, “Why are certain nonlinear PDE's both widely applicable and integrable?” in:What is integrability?(V. E. Zakharov, ed.), Springer, Berlin (1991), p. 1–62.Google Scholar
  7. 7.
    N. K. Ibragimov and A. B. Shabat, Funct. Anal. Appl., 14, No. 4, 19–28 (1980).Google Scholar
  8. 8.
    S. I. Svinolupov and V. V. Sokolov, Funct. Anal. Appl., 16, No. 4, 317–319 (1982).Google Scholar
  9. 9.
    H. H. Chen, Y. C. Lee, and C. S. Liu, Phys. Scripta, 20, 490–492 (1979).Google Scholar
  10. 10.
    A. G. Meshkov, Inverse Problems, 10, 635–653 (1994).Google Scholar
  11. 11.
    V. V. Sokolov and A. B. Shabat, Sov. Sci. Rev. C, 221–280 (1984).Google Scholar
  12. 12.
    S. I. Svinolupov, Phys. Lett. A, 135, 32–36 (1989).Google Scholar
  13. 13.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).Google Scholar
  14. 14.
    A. V. Mikhailov, V. V. Sokolov, and A. B. Shabat, “The symmetry approach to classification of integrable equations,” in: What is Integrability?(V. E. Zakharov, ed.), Springer, Berlin (1991), p. 113–184.Google Scholar
  15. 15.
    V. E. Adler, Internat. Math. Res. Notices, 1998, No. 1, 1–4 (1998).Google Scholar
  16. 16.
    A. I. Bobenko and Yu. B. Suris, Internat. Math. Res. Notices, 2002, No. 11, 573–611 (2002).Google Scholar
  17. 17.
    A. I. Bobenko and Yu. B. Suris, Lett. Math. Phys., 61, 241–254 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. G. Meshkov
  • V. V. Sokolov

There are no affiliations available

Personalised recommendations