Advertisement

Theoretical and Mathematical Physics

, Volume 139, Issue 1, pp 486–499 | Cite as

Higher-Dimensional Representations of the Reflection Equation Algebra

  • D. I. Gurevich
  • P. A. Saponov
Article
  • 36 Downloads

Abstract

We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements sk = TrqLk of the reflection equation algebra on “q-symmetric” and “q-antisymmetric” representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.

reflection equation algebra Hecke algebra representations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. V. Cherednik, Theor. Math. Phys., 61, 977–983 (1984).Google Scholar
  2. 2.
    P. Schupp, P. Watts, and B. Zumino, Lett. Mat. Phys., 25, 139–147 (1992); B. Zumino, “Introduction to the differential geometry of quantum groups,” Prepint UCB-PTH-62/91, Univ. of California, Berkeley, Calif. (1991); A. P. Isaev and P. Pyatov, Phys. Lett. A, 179, 81–90 (1993).Google Scholar
  3. 3.
    J. Donin and A. Mudrov, Lett. Mat. Phys., 62, 17–32 (2002).Google Scholar
  4. 4.
    D. Gurevich and P. Saponov, J. Phys. A, 35, 9629–9643 (2002); 34, 4553–4569 (2001).Google Scholar
  5. 5.
    N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Leningrad Math. J., 1, 193–225 (1990).Google Scholar
  6. 6.
    O. Ogievetsky and P. Pyatov, “Lecture on Hecke algebras,” in: Symmetries and Integrable Systems (S. Z. Pakuliak, ed.), Joint Inst. Nucl. Res., Dubna (2000), p. 39–88.Google Scholar
  7. 7.
    A. Gyoja, Osaka J. Math., 23, 841–852 (1986); R. Dipper and G. James, Proc. London Math. Soc., 54, 57–82 (1987); G. E. Murphy, J. Algebra, 152, 492–513 (1992).Google Scholar
  8. 8.
    D. I. Gurevich, Leningrad Math. J., 2, 801–828 (1991).Google Scholar
  9. 9.
    P. P. Kulish, R. Sasaki, and C. Schwiebert, J. Math. Phys., 34, 286–304 (1993).Google Scholar
  10. 10.
    P. P. Kulish and E. K. Sklyanin, J. Phys. A, 25, 5963–5976 (1992); P. P. Kulish and R. Sasaki, Progr. Theoret. Phys., 89, 741–761 (1993).Google Scholar
  11. 11.
    J. Donin, P. P. Kulish, and A. I. Mudrov, Lett. Math. Phys., 63, 179–194; math.QA/0210242 (2002).Google Scholar
  12. 12.
    A. A. Belavin and V. G. Drinfeld, Funct. Anal. Appl., 16, No. 3, 159–180 (1982).Google Scholar
  13. 13.
    P. P. Kulish, St. Petersburg Math. J., 6, 365–374 (1995).Google Scholar
  14. 14.
    D. Gurevich, R. Leclercq, and P. Saponov, J. Geom. Phys., 44, 251–278 (2002).Google Scholar
  15. 15.
    D. Gurevich, R. Leclercq, and P. Saponov, “q-Index on braided non-commutative spheres,” math.QA/0207268 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • D. I. Gurevich
    • 1
  • P. A. Saponov
    • 2
  1. 1.ISTVUniversité de ValenciennesValenciennesFrance
  2. 2.Institute for High Energy Physics, ProtvinoMoscow OblastRussia

Personalised recommendations