Theoretical and Mathematical Physics

, Volume 138, Issue 3, pp 383–396 | Cite as

The n-Wave Procedure and Dimensional Regularization for the Scalar Field in a Homogeneous Isotropic Space

  • Yu. V. Pavlov

Abstract

We obtain expressions for the vacuum expectations of the energy–momentum tensor of the scalar field with an arbitrary coupling to the curvature in an N-dimensional homogeneous isotropic space for the vacuum determined by diagonalization of the Hamiltonian. We generalize the n-wave procedure to N-dimensional homogeneous isotropic space–time. Using the dimensional regularization, we investigate the geometric structure of the terms subtracted from the vacuum energy–momentum tensor in accordance with the n-wave procedure. We show that the geometric structures of the first three subtractions in the n-wave procedure and in the effective action method coincide. We show that all the subtractions in the n-wave procedure in a four- and five-dimensional homogeneous isotropic space correspond to a renormalization of the coupling constants of the bare gravitational Lagrangian.

scalar field quantum theory in curved space renormalization dimensional regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Énergoatomizdat, Moscow (1988); English transl., Friedmann Laboratory Publishing, St. Petersburg (1994).Google Scholar
  2. 2.
    N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982).Google Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Internat. J. Mod. Phys. D, 11, 433 (2002); Internat. J. Mod. Phys. A, 17, 4435 (2002).Google Scholar
  4. 4.
    L. Parker and A. Raval, Phys. Rev. D, 60, 063512 (1999); Phys. Rev. Lett., 86, 749 (2001).Google Scholar
  5. 5.
    Ya. B. Zel'dovich and A. A. Starobinsky, JETP, 34, 1159 (1972).Google Scholar
  6. 6.
    L. Parker and S. A. Fulling, Phys. Rev. D, 9, 341 (1974).Google Scholar
  7. 7.
    M. Bordag, J. Lindig, and V. M. Mostepanenko, Class. Q. Grav., 15, 581 (1998).Google Scholar
  8. 8.
    S. Habib, C. Molina-París, and E. Mottola, Phys. Rev. D, 61, 024010 (2000).Google Scholar
  9. 9.
    T. S. Bunch, J. Phys. A, 13, 1297 (1980).Google Scholar
  10. 10.
    S. G. Mamayev, V. M. Mostepanenko, and V. A. Shelyuto, Theor. Math. Phys., 63, 366 (1985).Google Scholar
  11. 11.
    Yu. V. Pavlov, Theor. Math. Phys., 128, 1034 (2001).Google Scholar
  12. 12.
    N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincaré. A, 9, 109 (1968).Google Scholar
  13. 13.
    T. S. Bunch, J. Phys. A, 12, 517 (1979).Google Scholar
  14. 14.
    G. 't Hooft and M. Veltman, Nucl. Phys. B, 44, 189 (1972).Google Scholar
  15. 15.
    B. S. DeWitt, Dynamic Theory of Groups and Fields, Gordon and Breach, New York (1965); Phys. Rev., 162, No. 5 (1967); “A gauge invariant effective action,” in: Quantum Gravity 2 (C. J. Isham, R. Penrose, and D. W. Sciama, eds.), Clarendon, Oxford (1981).Google Scholar
  16. 16.
    V. L. Ginzburg, D. A. Kirzhnits, and A. A. Lyubushin, JETP, 33, 242 (1971).Google Scholar
  17. 17.
    S. G. Mamayev, V. M. Mostepanenko, and A. A. Starobinsky, JETP, 43, 5 (1976).Google Scholar
  18. 18.
    Yu. V. Pavlov, Theor. Math. Phys., 126, 92 (2001).Google Scholar
  19. 19.
    B. S. DeWitt, Phys. Rep. C, 19, 295 (1975).Google Scholar
  20. 20.
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory [in Russian], Nauka, Moscow (1978); English transl., Springer, Berlin (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Yu. V. Pavlov
    • 1
  1. 1.Institute for Machine Engineering ProblemsRASSt. PetersburgRussia

Personalised recommendations