Advertisement

Theoretical and Mathematical Physics

, Volume 138, Issue 3, pp 338–355 | Cite as

Laplace Invariants of Two-Dimensional Open Toda Lattices

  • A. M. Guryeva
  • A. V. Zhiber
Article

Abstract

We show that Toda lattices with the Cartan matrices A n , B n , C n , and D n are Liouville-type systems. For these systems of equations, we obtain explicit formulas for the invariants and generalized Laplace invariants. We show how they can be used to construct conservation laws (x and y integrals) and higher symmetries.

symmetries integrals Laplace invariants generalized invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vol. 2, Gauthier-Villars, Paris (1915).Google Scholar
  2. 2.
    E. Vessiot, J. Math. Pure Appl., 18, No. 9, 1–61 (1939); 21, No. 9, 1–68 (1942).Google Scholar
  3. 3.
    M. Yu. Zvyagin, Sov. Math. Dokl., 43, No. 1, 30–34 (1991).Google Scholar
  4. 4.
    A. N. Leznov, V. G. Smirnov, and A. B. Shabat, Theor. Math. Phys., 51, 322–329 (1982).Google Scholar
  5. 5.
    A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, Dokl. Math., 52, 128–130 (1995).Google Scholar
  6. 6.
    J. M. Anderson and N. Kamran, Duke Math. J., 87, 265–319 (1997).Google Scholar
  7. 7.
    V. V. Sokolov and A. V. Zhiber, Phys. Lett. A, 208, 303–308 (1995).Google Scholar
  8. 8.
    E. Goursat, Leçons sur l'intégration des équation aux dérivées partielles du second order á deux variable indépendantes, Vols. 1 and 2, Hermann, Paris (1896, 1898).Google Scholar
  9. 9.
    A. V. Zhiber and V. V. Sokolov, Usp. Mat. Nauk, 56, 61–101 (2001).Google Scholar
  10. 10.
    J. M. Anderson and M. Juras, Duke Math. J., 89, 351–375 (1997).Google Scholar
  11. 11.
    S. P. Tsarev, Theor. Math. Phys., 122, 121–133 (2000).Google Scholar
  12. 12.
    S. Ya. Startsev, Theor. Math. Phys., 127, 460–470 (2001).Google Scholar
  13. 13.
    E. V. Ferapontov, Theor. Math. Phys., 110, 68–77 (1997).Google Scholar
  14. 14.
    V. E. Adler and S. Ya. Startsev, Theor. Math. Phys., 121, 1484–1495 (1999).Google Scholar
  15. 15.
    A. M. Gizzatkulova and A. V. Zhiber, “Systems of the Euler–Poisson equations with zero generalized Laplace invariants,” in: Mathematical Models and Methods of their Investigation [in Russian] (V. K. Andreev and A. V. Shan'ko, eds.), Vol. 1, Inst. Numerical Modeling, Siberian Branch, Russ. Acad. Sci., Krasnoyarsk (2001), pp. 169–175.Google Scholar
  16. 16.
    A. N. Leznov and M. V. Saveliev, Group Theory Methods of Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985).Google Scholar
  17. 17.
    A. B. Shabat and R. I. Yamilov, “Exponential systems of type II and Cartan matrices,” Preprint No. 1, Bashkir Branch, USSR Acad. Sci., Ufa (1981).Google Scholar
  18. 18.
    A. B. Shabat, Phys. Lett. A, 200, 121–133 (1995).Google Scholar
  19. 19.
    N. Bourbaki, Groupes et algébres de Lie (Chap. 1: Algébres de Lie, Chap. 2: Algébres de Lie libres, Chap. 3: Groupes de Lie; Actualités scientifiques et industrielles 1285, 1349; Éléments de mathématique fascicules 26, 36), Hermann, Paris (1971, 1972).Google Scholar
  20. 20.
    A. V. Zhiber and S. Ya. Startsev, “On the existence conditions for the Laplace transform for a linear hyperbolic system of equations,” in: Symmetry and Differential equations [in Russian] (V. K. Andreev, ed.), Inst. Numerical Modeling, Siberian Branch, Russ. Acad. Sci., Krasnoyarsk (2002), pp. 96–101.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A. M. Guryeva
    • 1
  • A. V. Zhiber
    • 2
  1. 1.Ufa State Aviation Technology UniversityUfaRussia
  2. 2.Institute of Mathematics, Ufa Science CenterRASUfaRussia

Personalised recommendations