Systematic Parasitology

, Volume 57, Issue 1, pp 1–14 | Cite as

Molecular methods clarify morphometric variation in triactinomyxon spores (Myxozoa) released from different oligochaete hosts

  • Sascha L. Hallett
  • Stephen D. Atkinson
  • Christer Erséus
  • Mansour El-Matbouli
Article

Abstract

Thirty-nine freshwater tubificid oligochaetes were isolated, each of which harboured a triactinomyxon infection. Spore characteristics include the typical triactinomyxon anchor shape, eight germ cells within the sporoplasm and three unequal (two long and one shorter) caudal processes with square tips. Despite morphological similarities between the spores from the different hosts, their morphometrical data varied considerably; significantly, the ranges of dimensions of the smallest and largest exemplars were mutually exclusive. In order to ascertain the true number of spore types present, molecular methods were employed. Samples of waterborne spores, including the smallest and largest representatives, were selected from 11 host oligochaetes (all Tubifex tubifex Müller) and a nested PCR-RFLP `riboprint' analysis performed. The small subunit ribosomal DNA gene (18S rDNA) was targetted and amplified through two rounds of PCR, then digested with the restriction enzymes Dde I and Hha I. The resultant major cleavage patterns produced by both enzymes indicated a single triactinomyxon form; however, the pattern of several less intense bands varied between the samples. From a subset of five samples drawn from across the full spectrum of spore sizes, a 327 bp region near the 5′ was sequenced and was identical for all five samples. Comparison of this 327 bp region with that of 12 other triactinomyxons in GenBank showed 68.7–96.9% similarity (at least 9 base differences). A further 469 bp generated for each of the smallest, largest and mid-range (= reference) spore samples was identical also. The reference sample was sequenced further to yield 1,554 bp of 18S rDNA (GenBank accession number AY162270); comparison with other Myxozoa indicated this sequence was novel. The morphometrics of our triactinomyxon did not correlate with any published description. The morphometrical variation exhibited by spores of the triactinomyxon type in this study raises questions about the validity of using morphometrical data to distinguish spore types and suggests that there could be taxonomic redundancy in the diversity of actinosporeans recorded in the literature. The additional information provided by molecular data in this study was pivotal in the clarification of morphometrical variation exhibited by morphologically similar triactinomyxon spores released from different oligochaete hosts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andree, K.B., Gresoviac, S.J. & Hedrick, R.P. (1997) Small subunit ribosomal RNA sequences unite alternate actinosporean and myxosporean stages of Myxobolus cerebralisthe causative agent of whirling disease in salmonid fish. Journal of Eukaryotic Microbiology, 44, 208-215.PubMedGoogle Scholar
  2. Andree, K.B., MacConnell, E. & Hedrick, R.P. (1998) A nested polymerase chain reaction for the detection of genomic DNA of Myxobolus cerebralisin rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 34, 145-154.PubMedGoogle Scholar
  3. Andree, K.B., Székely, C., Molnár, K. Gresoviac, S.J. & Hedrick, R.P. (1999) Relationships among members of the genus Myxobolus(Myxozoa: Bivalvidae) based on small subunit ribosomal DNA sequences. Journal of Parasitology, 85, 68-74.PubMedGoogle Scholar
  4. Bartholomew, J.L., Whipple, M.J., Stevens, D.G. & Fryer, J.L. (1997) The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. Journal of Parasitology, 83, 859-868.PubMedGoogle Scholar
  5. Clark, C.G. (1997) Riboprinting: a tool for the study of genetic diversity in microorganisms. Journal of Eukaryotic Microbiology, 44, 277-283.PubMedGoogle Scholar
  6. Dyková, I., Lom, J. & Cirkovic, M. (1986) Brain myxoboliasis of common carp (Cyprinus carpio) due to Myxobolus encephalicus. Bulletin of the European Association of Fish Pathologists, 6, 10-12.Google Scholar
  7. El-Mansy, A. & Molnár, K. (1997a) Extrapiscine development of Myxobolus drjaginiAkhmerov, 1954 (Myxosporea: Myxobolidae) in oligochaete alternative hosts. Acta Veterinaria Hungarica, 45, 427-438.PubMedGoogle Scholar
  8. El-Mansy, A. & Molnár, K. (1997b) Development of Myxobolus hungaricus(Myxosporea: Myxobolidae) in oligochaete alternate hosts. Diseases of Aquatic Organisms, 31, 227-232.Google Scholar
  9. El-Mansy, A., Molnár, K. & Székely, C. (1998a) Development of Myxobolus portucalensisSaraiva & Molnár, 1990 (Myxosporea: Myxobolidae) in the oligochaete Tubifex tubifex(Müller). Systematic Parasitology, 41, 95-103.CrossRefGoogle Scholar
  10. El-Mansy, A., Székely, C. & Molnár, K. (1998b) Studies on the occurrence of actinosporean stages of fish myxosporeans in a fish farm of Hungary, with the description of triactinomyxon, raabeia, aurantiactinomyxon and neoactinomyxon types. Acta Vet Hungarica, 46, 259-284.Google Scholar
  11. El-Mansy, A., Székely, C., Molnár, K. (1998c) Studies on the occurrence of actinosporean stages of myxosporeans in Lake Balaton, Hungary, with the description of triactinomyxon, raabeia, and aurantiactinomyxon types. Acta Vet Hungarica, 46, 437-450.Google Scholar
  12. El-Matbouli, M. & Hoffmann, R.W. (1998) Light and electron microscopic studies on the chronological development of Myxobolus cerebralisto the actinosporean stage in Tubifex tubifex. International Journal for Parasitology, 28, 195-217.CrossRefPubMedGoogle Scholar
  13. El-Matbouli, M. & Hoffmann, R.W. (1993) Myxobolus carassiiKlokaceva, 1914 also requires an aquatic oligochaete, Tubifex tubifexas an intermediate host in its life cycle. Bulletin of the European Association of Fish Pathologists, 13, 189-192.Google Scholar
  14. El-Matbouli, M. & Hoffmann, R.W. (1989) Experimental transmission of two Myxobolusspp. developing bisporogeny via tubificid worms. Parasitology Research, 75, 461-464.PubMedGoogle Scholar
  15. Eszterbauer, E. (2002) Molecular biology can differentiate morphologically indistinguishable myxosporean species: Myxobolus elegansand M. hungaricus. Acta Veterinaria Hungarica, 50, 59-62.CrossRefPubMedGoogle Scholar
  16. Eszterbauer, E., Benkö, M., Dán, á. & Molnár, K. (2001) Identification of fish-parasitic Myxobolus(Myxosporea) species using a combined PCR-RFLP method. Diseases of Aquatic Organisms, 44, 35-39.PubMedGoogle Scholar
  17. Eszterbauer, E., Benkö, M., & Molnár, K. (2002) Differentiation of morphologically very similar gill parasite Myxobolusspecies (Myxosporea) by restriction fragment length polymorphism (PCR-RFLP) method. Magyar állatorvosok Lapja, 124, 361-366.Google Scholar
  18. Eszterbauer, E., Székely, C., Molnár, K., & Baska, F. (2000) Development of Myxobolus bramae(Myxosporea: Myxobolidae) in an oligochaete alternate host, Tubifex tubifex. Journal of Fish Diseases, 23, 19-25.CrossRefGoogle Scholar
  19. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.Google Scholar
  20. Hallett, S.L., Atkinson, S.D. & El-Matbouli, M. (2002) Molecular characterisation of two aurantiactinomyxon (Myxozoa) phenotypes reveals one genotype. Journal of Fish Diseases, 25, 627-631.CrossRefGoogle Scholar
  21. Hallett, S.L. & Diamant, A. (2001) Ultrastructure and smallsubunit ribosomal DNA sequence of Henneguya lesterin.sp. (Myxosporea), a parasite of sand whiting Sillago analis(Sillaginidae) from the coast of Queensland, Australia. Diseases of Aquatic Organisms, 46, 197-212.PubMedGoogle Scholar
  22. Hallett, S.L., Erséus, C. & Lester, R.J.G. (1997) Actinosporea from Hong Kong marine Oligochaeta. In: Morton, B. (Ed.) The marine flora and fauna of Hong Kong and southern China. IV. Proceedings of the Eighth International Marine Biological Workshop: the Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 2-20 April 1995.Hong Kong: Hong Kong University Press, pp. 1-7.Google Scholar
  23. Hallett, S.L., Erséus, C., O'Donoghue, P.J. & Lester, R.J.G. (2001) Parasite fauna of Australian marine oligochaetes. Memoirs of the Queensland Museum, 46, 555-576.Google Scholar
  24. Hallett, S.L., O'Donoghue, P.J. & Lester, R.J.G. (1998) Structure and development of a marine actinosporean, Sphaeractinomyxon ersein. sp. (Myxozoa). Journal of Eukaryotic Microbiology, 45, 142-150.Google Scholar
  25. Hervio, D.M.L., Kent, M.L., Khattra, J., Sakanari, J., Yokoyama, H. & Devlin, R.H. (1997) Taxonomy of Kudoaspecies (Myxosporea) using small subunit ribosomal DNA sequence. Canadian Journal of Zoology, 75, 2112-2119.Google Scholar
  26. Hillis, D.M. & Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology, 66, 411-453.CrossRefPubMedGoogle Scholar
  27. Hine, P.M., Cochennec-Laureau, N. & Berthe, F.C.J. (2001) Bonamia exitiosusn.sp. (Haplosporidia) infecting flat oysters Ostrea chilensisin New Zealand. Diseases of Aquatic Organisms, 47, 63-72.PubMedGoogle Scholar
  28. Kathman, R.D. & Brinkhurst, B. (1998) Guide to the freshwater oligochaetes of North America. College Grove, Tennessee: Aquatic Resources Center, 264 pp.Google Scholar
  29. Kent, M.L., Andree, K.B., Bartholomew, J.L., El-Matbouli, M., Desser, S.S., Devlin, R.H., Feist, S.W., Hedrick, R.P., Hoffmann, R.W., Khattra, J., Hallett, S.L., Lester, R.J.G., Longshaw, M., Palenzeula, O., Siddall, M.E. & Xiao, C. (2001). Recent advances in our knowledge of the Myxozoa. The Journal of Eukaryotic Microbiology, 48, 395-413.PubMedGoogle Scholar
  30. Kent, M.L., Khattra, J., Hervio, D.M.L. & Devlin, R.H. (1998). Ribosomal DNA sequence analysis of isolates of the PKX myxosporean and their relationship to members of the genus Sphaerospora. Journal of Aquatic Animal Health, 10, 12-21.CrossRefGoogle Scholar
  31. Kent, M.L., Margolis, L. & Corliss, J.O. (1994) The demise of a class of protists: taxonomic and nomenclatural revisions proposed for the protist phylum Myxozoa Grassé, 1970. Canadian Journal of Zoology, 72, 932-937.Google Scholar
  32. Kent, M.L., Whitaker, D.J. & Margolis, L. (1993) Transmission of Myxobolus arcticusPugachev & Khokhlov, 1979, a myxosporean parasite of Pacific salmon, via a triactinomyxon from the aquatic oligochaete Stylodrilus heringianus(Lumbriculidae). Canadian Journal of Zoology, 71, 1207-1211.Google Scholar
  33. Kent, M.L. & Poppe, T.T. (1998) Diseases of seawater netpenreared salmonid fishes. Nanaimo, BC: Fisheries and Oceans, Pacific Biological Station, 138pp.Google Scholar
  34. Køie, M. (2000) First record of an actinosporean (Myxozoa) in a marine polychaete annelid. Journal of Parasitology, 86, 871-872.PubMedGoogle Scholar
  35. Køie, M. (2002) Spirorbid and serpulid polychaetes are candidates as invertebrate hosts for myxozoa. Folia Parasitologica, 49, 160-162.PubMedGoogle Scholar
  36. Lin, D., Hanson, L.A. & Pote, L.M. (1999) Small subunit ribosomal RNA sequence of Henneguya exilis(Class Myxosporea) identi-fies the actinosporean stage from an oligochaete host. Journal of Eukaryotic Microbiology, 46, 66-68.PubMedGoogle Scholar
  37. Lom, J. & Hoffman, G.L. (1971) Morphology of the spores of Myxosoma cerebralis(Hofer, 1903) and M. cartilaginis(Hoffman, Putz, and Dunbar, 1965). Journal of Parasitology, 57, 1302-1308.PubMedGoogle Scholar
  38. Lom, J., McGeorge, J., Feist, S.W., Morris, D. & Adams, A. (1997) Guidelines for the uniform characterisation of the actinosporean stages of parasites of the phylum Myxozoa. Diseases of Aquatic Organisms, 30, 1-9.Google Scholar
  39. Marquès, A. (1984) Contribution à la connaissance des Actinomyxidies: ultrastructure, cycle biologique, systématique. PhD Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France. Thèse d'état, 218 pp.Google Scholar
  40. McGeorge, J., Sommerville, C. & Wootten, R. (1997) Studies of actinosporean myxozoan stages parasitic in oligochaetes from the sediments of a hatchery where Atlantic salmon harbour Sphaerospora truttaeinfection. Diseases of Aquatic Organisms, 30, 107-119.Google Scholar
  41. Mitchell, L.G. (1989) Myxobolid parasites (Myxozoa: Myxobolidae) infecting fishes of Western Montana, with notes on histopathology, seasonality, and intraspecific variation. Canadian Journal of Zoology, 67, 1915-1922.Google Scholar
  42. Molnár, K., Eszterbauer, E., Székely, C., Dán, á. & Harrach, B. (2002) Morphological and molecular biological studies on intramuscular Myxobolusspp. of cyprinid fish. Journal of Fish Diseases, 25, 643-652.CrossRefGoogle Scholar
  43. Negredo, C. & Mulcahy, M.F. (2001) Actinosporean infections in oligochaetes in a river system in southwest Ireland with descriptions of three new forms. Diseases of Aquatic Organisms, 46, 67-77.PubMedGoogle Scholar
  44. Nielsen, C.V., Køie, M., Székely, C. & Buchmann, K. (2002) Comparative analysis of 18S rRNA genes from Myxobolus aeglefiniAuerbach, 1906 isolated from cod (Gadus morhua), plaice (Pleuronectes platessa) and dab (Limanda limanda), using PCRRFLP. Bulletin of the European Association of Fish Pathologists, 22, 201-205.Google Scholar
  45. Okamura, B., Anderson, C.L., Longshaw, M., Feist, S.W. & Canning, E.U. (2001) Patterns of occurrence and 18SrDNA sequence variation of PKX (Tetracapsula bryosalmonae), the causative agent of salmonid proliferative kidney disease. Journal of Parasitology, 87, 379-385.PubMedGoogle Scholar
  46. Oumouna, M., Hallett, S.L., Hoffmann, R.W. & El-Matbouli, M. (2002) Seasonal occurrence of actinosporeans (Myxozoa) and oligochaetes (Annelida) at a trout hatchery in Bavaria, Germany. Parasitology Research, 89, 170-184.PubMedGoogle Scholar
  47. özer, A., Wootten, R. & Shinn, A.P. (2002) Survey of actinosporean types (Myxozoa) belonging to seven collective groups found in a freshwater salmon farm in Northern Scotland. Folia Parasitologica, 49, 189-210.PubMedGoogle Scholar
  48. Pearson, W.R. & Lipman, D.J. (1988) Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America, 85, 2444-8.PubMedGoogle Scholar
  49. Rácz, O.Z. & Timm, T. (2002) First report on the occurrence of actinosporean stages of fish myxosporeans (Myxozoa, Myxosporea) in Estonia. Acta Parasitologica, 47, 190-195.Google Scholar
  50. Roubal, F.R., Hallett, S.L. & Lester, R.J.G. (1997) First record of triactinomyxon actinosporean in marine oligochaete. Bulletin of the European Association of Fish Pathologists, 17, 83-85.Google Scholar
  51. Ruidisch, S., El-Matbouli, M. & Hoffmann, R.W. (1991) The role of tubificid worms as an intermediate host in the life cycle of Myxobolus pavlovskii(Akhmerov, 1954). Parasitology Research, 77, 663-667.PubMedGoogle Scholar
  52. Štolc, A. (1899) Actinomyxidies, nouveau groupe de Mesozoaires parent des Myxosporidies. Bulletin International l'Academie des Sciences de Boheme, 22, 1-12.Google Scholar
  53. Székely, C., Molnár, K., Eszterbauer, E. & Baska, F. (1999) Experimental detection of the actinospores of Myxobolus pseudodispar(Myxosporea: Myxobolidae) in oligochaete alternate hosts. Diseases of Aquatic Organisms, 38, 219-224.PubMedGoogle Scholar
  54. Székely, C., Rácz, O., Molnár, K. & Eszterbauer, E. (2002a) Development of Myxobolus macrocapsularis(Myxosporea: Myxobolidae) in an oligochaete alternate host, Tubifex tubifex. Diseases of Aquatic Organisms, 48, 117-123.PubMedGoogle Scholar
  55. Székely, C., Sitjà-Bobadilla, A. & Alvarez-Pellitero, P. (2000) First report on the occurrence of an actinosporean stage (Myxozoa) in oligochaetes from Spanish freshwaters. Acta Veterinaria Hungarica, 48, 433-441.PubMedGoogle Scholar
  56. Székely, C., Urawa, S. & Yokoyama, H. (2002b) Occurrence of actinosporean stages of myxosporeans in an inflow brook of a salmon hatchery in the Mena River System, Hokkaido, Japan. Diseases of Aquatic Organisms, 49, 153-160.PubMedGoogle Scholar
  57. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-80.PubMedGoogle Scholar
  58. Timm, T. (1999) A guide to the Estonian Annelida. Tallinn: Teaduste Akadeemia Kirjastus (Estonian Academy Publishers), 208 pp.Google Scholar
  59. Xiao, C. & Desser, S.S. (1998a) Actinosporean stages of Myxozoan parasites of oligochaetes from Lake Sasajewun, Algonquin Park, Ontario: new forms of triactinomyxon and raabeia. Journal of Parasitology, 84, 998-1009.PubMedGoogle Scholar
  60. Xiao, C. & Desser, S.S. (1998b) Actinosporean stages of Myxozoan parasites of oligochaetes from Lake Sasajewun, Algonquin Park, Ontario: new forms of echinactomyxon, neoactinomyxum, aurantiactinomyxon, guyenotia, synactinomyxon and antonactinomyxon. Journal of Parasitology, 84, 1010-1019.PubMedGoogle Scholar
  61. Xiao, C. & Desser, S.S. (2000) Molecular characterization of myxozoan parasites from Lake Sasajewun, Algonquin Park, Ontario, by riboprinting. Journal of Eukaryotic Microbiology, 47, 85-89.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sascha L. Hallett
    • 1
  • Stephen D. Atkinson
    • 1
  • Christer Erséus
    • 2
  • Mansour El-Matbouli
    • 1
  1. 1.Institute of Zoology, Fish Biology and Fish DiseasesUniversity of MunichMunichGermany
  2. 2.Department of Invertebrate ZoologySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations