The Journal of Supercomputing

, Volume 29, Issue 1, pp 27–44 | Cite as

Seismic Ray-Tracing and Earth Mesh Modeling on Various Parallel Architectures

  • Marc GrunbergEmail author
  • Stéphane Genaud
  • Catherine Mongenet


A major research topic in geophysics deals with the modelization of the Earth interior, and seismic tomography is a means to improve knowledge in this field. In order to improve the accuracy of existing methods, huge quantities of information must be computed. We present in this paper the design of a software program implementing a fast seismic ray-tracing in an Earth mesh. We show that massively parallel computational resources may be used to process huge quantity of data. We present experimentations on several computational equipments with various hardware architectures (a parallel computer, a cluster, and a Grid) and report which parallel programming paradigm best suits each of these equipments.

parallel MPI application geophysics tomography ray-tracing earth mesh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bijwaard and W. Spakman. Fast kinematics ray tracing of first and later arriving global seismic phases. Geophys. J. Int., 139:359–369, 1999.Google Scholar
  2. 2.
    D. Cores, G. M. Fung, and R. J. Michelena. A fast and global two point low storage optimization technique for tracing rays in 2D and 3D isotropic media. Journal of Applied Geophysics, 56(45):273–287, 2000.Google Scholar
  3. 3.
    R. David, S. Genaud, A. Giersch, B. Schwarz, and E. Violard. Source code transformations strategies to load-balance Grid applications. In Manish Parashar, ed., Proceedings of Grid Computing—Grid 2002: Third International Workshop, volume 2536 of Lecture Notes in Computer Science, pp. 82–87, Springer-Verlag, Baltimore, MD, USA, November 2002.Google Scholar
  4. 4.
    I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed computing systems. Supercomputing, November 1998.Google Scholar
  5. 5.
    I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer Applications, 1997.Google Scholar
  6. 6.
    I. Foster and C. Kesselman. The Grid, Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.Google Scholar
  7. 7.
    M. Granet and J. Trampert. Large-scale p-velocity structures in the euro-mediterranean area. Geophys. J. Int., 99:583–594, 1989.Google Scholar
  8. 8.
    M. Grunberg, S. Genaud, and C. Mongenet. Parallel seismic ray-tracing in a global earth mesh. In Proceedings of PDPTA'02, pp. 1151–1157, June 2002.Google Scholar
  9. 9.
    B. L. N. Kennett. Iaspei 1991 seismological tables. Research School of Earth Sciences Australian National University, 1991.Google Scholar
  10. 10.
    Message Passing Interface Forum. MPI: A Message-passing Interface Standard, June 1995.Google Scholar
  11. 11.
    M. Sambridge and O. Gudmundsson. Tomography systems of equations with irregular cells. J. of Geophys. Res., 103 (No. B1):773–781, 1998.Google Scholar
  12. 12.
    W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics. Prentice Hall, December 1997.Google Scholar
  13. 13.
    J. M. Squyres, A. Lumsdaine, W. L. George, J. G. Hagedorn, and J. E. Devaney. The interoperable message passing interface (IMPI) extensions to LAM/MPI. In Proceedings, MPIDC'2000, March 2000.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marc Grunberg
    • 1
    Email author
  • Stéphane Genaud
    • 2
  • Catherine Mongenet
    • 2
  1. 1.EOST, ULPStrasbourg
  2. 2.LSIIT-ICPSIllkirch

Personalised recommendations