Studia Logica

, Volume 77, Issue 2, pp 153–180

Free Łukasiewicz and Hoop Residuation Algebras

  • Joel Berman
  • W. J. Blok


Hoop residuation algebras are the {→, 1}-subreducts of hoops; they include Hilbert algebras and the {→, 1}-reducts of MV-algebras (also known as Wajsberg algebras). The paper investigates the structure and cardinality of finitely generated free algebras in varieties of k-potent hoop residuation algebras. The assumption of k-potency guarantees local finiteness of the varieties considered. It is shown that the free algebra on n generators in any of these varieties can be represented as a union of n subalgebras, each of which is a copy of the {→, 1}-reduct of the same finite MV-algebra, i.e., of the same finite product of linearly ordered (simple) algebras. The cardinality of the product can be determined in principle, and an inclusion-exclusion type argument yields the cardinality of the free algebra. The methods are illustrated by applying them to various cases, both known (varieties generated by a finite linearly ordered Hilbert algebra) and new (residuation reducts of MV-algebras and of hoops).

free algebra free spectrum BCK-algebra hoop hoop residuation algebra Łukasiewicz algebra MV-algebra Łukasiewicz residuation algebra Hilbert algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abbott, J. C., \lsImplicational algebras\rs, Bull. Math. R. S. Roumaine 11 (1967), 3–23.Google Scholar
  2. [2]
    Birkhoff, G., Lattice Theory, Amer. Math. Soc., Providence, 1967.Google Scholar
  3. [3]
    Berman, J. and W. J. Blok, \lsAlgebras defined from ordered sets and the varieties they generate\rs, manuscript.Google Scholar
  4. [4]
    Blok, W. J., and D. Pigozzi, \lsOn the structure of varieties with equationally definable principla congruences I\rs, Algebra Universalis 15 (1982), 195–227.Google Scholar
  5. [5]
    Blok, W. J., and D. Pigozzi, \lsOn the structure of varieties with equationally definable principal congruences III\rs, Algebra Universalis 32 (1994), 545–608.Google Scholar
  6. [6]
    Blok, W. J., and J. G. Raftery, \lsVarieties of commutative residuated integral pomonoids and their residuation subreducts\rs, J. Algebra 190 (1997), 280–328.CrossRefGoogle Scholar
  7. [7]
    Blok, W. J., and I. M. A. Ferreirim, \lsHoops and their implicational reducts (abstract)\rs, Algebraic Methods in Logic and in Computer Science (Warsaw, 1991), 219–230, Banach Center Publ. 28, Polish Acad. Sci., Warsaw, 1993.Google Scholar
  8. [8]
    Blok, W. J., and I. M. A. Ferreirim, \lsOn the structure of hoops\rs, Algebra Universalis 43 (2000), 233–257.CrossRefGoogle Scholar
  9. [9]
    Bosbach, B., \lsKomplement\:are Halbgruppen. Axiomatik und Arithmetik\rs, Fund. Math. 64 (1969), 257–287.Google Scholar
  10. [10]
    Bruijn, N. G. de, \lsThe use of partially ordered sets for the study of nonclassical propositional logics\rs, Probl\`emes combinatoires et th\'eorie des graphes, Colloq. Internat. CNRS 260 (1978), 67–70.Google Scholar
  11. [11]
    B\:uchi, J. R, and T. M. Owens, \lsComplemented monoids and hoops\rs, unpublished manuscript.Google Scholar
  12. [12]
    Cignoli, R., D. Mundici, and I. M. L. D'Ottaviano, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  13. [13]
    Cornish, W. H., \lsA large variety of BCK-algebras\rs, Math. Japon. 26 (1981), 339–342.Google Scholar
  14. [14]
    Diego, A., Sur les alg\`ebres d'Hilbert, Collection de Logique Math\'ematique, Sr. A, Fasc. XXI Gauthier-Villars, Paris; E. Nauwelaerts, Louvain 1966.Google Scholar
  15. [15]
    Ferreirim, I. M. A., On varieties and quasivarieties of hoops and their reducts, Ph. D. thesis, University of Illinois at Chicago, 1992.Google Scholar
  16. [16]
    Ferreirim, I. M. A., \lsOn a conjecture by Andrzej Wro\'nski for BCK-algebras and subreducts of hoops\rs, Sci. Math. Jpn. 53 (2001), 119–132.Google Scholar
  17. [17]
    Font J. M., A. J. Rodr\'iguez, and A. Torrens, \lsWajsberg algebras\rs, Stochastica 8 (1984), 5–31.Google Scholar
  18. [18]
    Guzm\'an, F., and C. Lynch, \lsVarieties of positive implicative BCK-algebras\3-subdirectly irreducible and free algebras\rs, Math. Japon. 37 (1992), 27–39.Google Scholar
  19. [19]
    Hendriks, A., Computations in propositional logic, Ph. D. thesis, University of Amsterdam, ILLC Dissertation Series, 1996.Google Scholar
  20. [20]
    Jankov, V. A., \lsOn the relation between deducibility in intuitionistic propositional calculus and finite implicative structures\rs (Russian) Dokl. Akad. Nauk SSSR 151 (1963), 1293–1294.Google Scholar
  21. [21]
    K\:ohler, P., \lsBrouwerian semilattices\rs, Trans. Amer. Math. Soc. 268 (1981), 103–126.Google Scholar
  22. [22]
    Komori, Y., \lsSuper-\kLukasiewicz implicational logics\rs, Nagoya Math. J. 72 (1978), 127–133.Google Scholar
  23. [23]
    \kLukasiewicz, J., and A. Tarski, \lsUntersuchungen \:uber den Aussagenkalk\:ul\rs, C. R. S\'eances Soc. Sci. Lettres Varsovie, Cl. 3, 23 (1930), 30–50. English Translation in [25]: \lsInvestigations into the sentential calculus\rs.Google Scholar
  24. [24]
    Monteiro, A., and L. Iturrioz, \lsLes alg\`ebres de Tarski avec un nombre fini de g\'en\'erateurs libres\rs. In A. Monteiro. Unpublished papers. 1. Notas de L\'ogica Matem\'atica, 40, Universidad Nacional del Sur, Bah\'ia Blanca, 1996.Google Scholar
  25. [25]
    Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Hackett Pub. Co., Indianapolis, Indiana, second, revised edition, 1981. Edited by J. Corcoran.Google Scholar
  26. [26]
    Urquhart, A., \lsImplicational formulas in intuitionistic logic\rs, J. Symbolic Logic 39 (1974), 661–664.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Joel Berman
    • 1
  • W. J. Blok
    • 1
  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoU.S.A.

Personalised recommendations