Structural Chemistry

, Volume 15, Issue 2, pp 117–120 | Cite as

Fluorine–Fluorine Interactions: NMR and AIM Analysis

  • Ibon Alkorta
  • José Elguero


The structure of a number of compounds that show experimental F⋅⋅⋅sF coupling constants across the space has been studied using HF-DFT methods (B3LYP) and Atoms in Molecules (AIM) methodologies. For all the cases with strong coupling constants a bond critical point and the corresponding bond path between the fluorine atoms involved has been found in the electron density map. In an attempt to predict NMR properties, new compounds for which no experimental F-F coupling constants are available, but with the same characteristics in the electron density maps, have been calculated.

DFT calculations fluorine-fluorine coupling constants AIM analysis through-space couplings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, R. F. W. Atoms in Molecules: A Quantum Theory (The International Series of Monographs of Chemistry); Halpen, J. and Green, M. L. H., Eds.; Clarendon Press: Oxford, 1990.Google Scholar
  2. 2.
    Gibbs, G. V.; Boisen Jr., M. B.; Rosso, K. M.; Teter, D. M.; Bukowinski, M. S. T. J. Phys. Chem. B 2000, 104, 147.Google Scholar
  3. 3.
    Bach, A.; Lentz, D.; Luger, P. J. Phys. Chem. A 2001, 105, 7405.Google Scholar
  4. 4.
    Zhurova, E. A.; Tsirelson, V. G.; Stash A. I.; Pinkerton, A. J. Amer. Chem. Soc. 2002, 124, 147.Google Scholar
  5. 5.
    Cioslowski, J.; Edgington, L.; Stefanov, B. B. J. Amer. Chem. Soc. 1991, 113, 147.Google Scholar
  6. 6.
    Bofill, J. M.; Olivella, S.; Solé, A.; Anglada, J. M. J. Amer. Chem. Soc. 1999, 121, 147.Google Scholar
  7. 7.
    Alkorta, I.; Elguero, J. J. Chem. Phys. 2002, 117, 147.Google Scholar
  8. 8.
    Cioslowski, J.; Edgington, L.; Stefanov, B. B. J. Amer. Chem. Soc. 1995, 117, 147.Google Scholar
  9. 9.
    Alkorta, I.; Elguero, J. J. Amer. Chem. Soc. 2002, 124, 147.Google Scholar
  10. 10.
    Hargittai, I. The Structure of Volatile Sulphur Compounds; Reidel: Dordrecht, 1985; p. 106, 785.Google Scholar
  11. 11.
    Bader, R. W. F. J. Phys. Chem. A 1998, 102, 147.Google Scholar
  12. 12.
    Ugalde, J. M.; Alkorta, I.; Elguero, J. Angew. Chem. Intern. Ed. 2000, 39, 147.Google Scholar
  13. 13.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. GAUSSIAN 98; Gaussian, Inc: Pittsburgh, PA, 1998.Google Scholar
  14. 14.
    Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 147.Google Scholar
  15. 15.
    Hariharan, P. C.; Pople, J. A. Theoret. Chim. Acta 1973, 28, 147.Google Scholar
  16. 16.
    Bieger-Konig, F. W.; Bader, R. F. W.; Tang, T. H. J. Comp. Chem. 1982, 3, 147.Google Scholar
  17. 17.
    Meresse, P. A.; Courseille, C.; Leroy, F.; Chanh, N. B. Acta Crystallogr. B 1975, 31B, 861.Google Scholar
  18. 18.
    Arnold, W. D.; Mao, J.; Sun H.; Oldfield, E. J. Amer. Chem. Soc. 2000, 122, 12164. Arnold, W. D.; Oldfield, E. J. Amer. Chem. Soc. 2000, 122, 147.Google Scholar
  19. 19.
    Mallory, F. B.; Mallory, C. W.; Butler, K. E.; Lewis, M. B.; Xia, A. Q.; Luzik Jr., E. D.; Fredenburgh, L. E.; Ramanjulu, M. M.; Van, Q. N.; Francl, M. M.; Freed, D. A.; Wray, C. C.; Hann, C.; Nerz-Stormes, M.; Carroll, P. J.; Chirlian, L. E. J. Amer. Chem. Soc. 2000, 122, 147.Google Scholar
  20. 20.
    Ernst, L.; Ibrom, K. Angew. Chem. Intern. Ed. Engl. 1995, 34, 1881.Google Scholar
  21. 21.
    Fields, R.; Gree, M.; Jones, A. J. Chem. Soc. B 1967, 6712.Google Scholar
  22. 22.
    Servis, K. L.; Fang, K. N. J. Amer. Chem. Soc. 1968, 90, 748.Google Scholar
  23. 23.
    Koroniak, H.; Palmer, K. W.; Dolbier. W. R.; Zhang, H. Q. Magn. Reson. Chem. 1993, 31, 748.Google Scholar
  24. 24.
    Mallory, F. B.; Mallory, C. W.; Ricker, W. M. J. Org. Chem. 1985, 50, 147.Google Scholar
  25. 25.
    Cremer D.; Kraka, E. Croat. Chem. Acta 1984, 57, 147.Google Scholar
  26. 26.
    Peralta, J. E.; Contreras, R. H.; Snyder, J. P. Chem. Commun. 2000, 2025.Google Scholar
  27. 27.
    Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2002, 117, 5529.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Ibon Alkorta
    • 1
  • José Elguero
    • 1
  1. 1.Instituto de Química Médica (C.S.I.C.)MadridSpain

Personalised recommendations