Structural Chemistry

, Volume 15, Issue 1, pp 51–64 | Cite as

Molecular Modeling in Chromatoscopy as a New Tool in the Structure Elucidation of Novel Isomers by GC/MS

  • Nickolay S. Kulikov
  • Marina S. Bobyleva


The importance of gas–solid chromatography on graphitized thermal carbon black (GTCB) as a source of additional data for the positive structural elucidation of novel isomers by gas chromatography–mass spectrometry is discussed. The retention parameters of isomers being investigated were calculated by Kiselev's method (chromatoscopy) to predict the order of their separation on a column packed with GTCB. To extend the possibilities of this method and to improve the accuracy of a prediction of retention parameters, the molecular mechanics was used for the optimization of hypothetical molecular models of isomers required for these calculations. As a test mixture 11 isomers of perhydroanthracene and perhydrophenanthrene were consedered. The predicted elution order from the column packed with GTCB of these isomers, calculated on the basis of molecular models optimized by molecular mechanics appeared to be close to the experiment, whereas the result obtained by a conventional approach appeared to fail. Molecular modeling in chromatoscopy was used for the structural elucidation of novel isomers of perhydroxanthene (PHX) and perhydro-4-thia-s-indacene (PHTI), which were found by GC–MS in reaction mixtures. The evidence for this assignment-based on the obtained GC and MS data, is discussed.

Gas chromatography–mass spectrometry chromatoscopy stereoisomers graphitized thermal carbon black 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiselev, A. V.; Kulikov, N. S. Dokl. Akad. Nauk SSSR, 1982, 266, 153.Google Scholar
  2. 2.
    Kiselev, A. V.; Kulikov, N. S.; Curthoys, G. Chromatographia 1984, 18, 297.Google Scholar
  3. 3.
    Adeeva, V. G.; Bobyleva, M. S., Kulikov, M. S., Kharchenko, V. G.; Yudovich, L. M. J. Chem. Soc. Perkin Trans. 2 1992, 965.Google Scholar
  4. 4.
    Kulikov, N. S. Adsorption Sci. & Technol. 1997, 15, 115.Google Scholar
  5. 5.
    Avgul, N. N., Kiselev, A. V.; Poshkus, D. P. Adsorption of Gases and Vapours on Uniform Surfaces, Khimiya: Moscow, 1975.Google Scholar
  6. 6.
    Kiselev, A. V.; Nazarova, V. I.; Shcherbakova, K. D. Chromatographia 1981, 14, 148.Google Scholar
  7. 7.
    Kiselev, A. V.; Nazarova, V. I.; Shcherbakova, K. D. J. Chromatogr. 1984, 92, 97.Google Scholar
  8. 8.
    Kiselev, A. V. Chromatographia 1978, 11, 691.Google Scholar
  9. 9.
    Kiselev, A. V.; Poshkus, D. P. Faraday Symp., Chem. Soc. 1980, 15, 13.Google Scholar
  10. 10.
    Kiselev, A. V. Intermolecular Interactions in Adsorption and Chromatography, Vyshaya Shkola: Moscow, 1986.Google Scholar
  11. 11.
    Buryak, A. K. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, p. 1995.Google Scholar
  12. 12.
    Dimitrov, L. D., Kiselev, A. V.; Petrova, R. S. Chromatographia 1981, 14, 107.Google Scholar
  13. 13.
    Grumadas, A. J., Poshkus, D. P.; Kiselev, A. V. J. Chem. Soc. Faraday Trans. 2 1982, 78, 2013.Google Scholar
  14. 14.
    Kiselev, A. V. Physical Chemistry, Modern Problems; Khimiya: Moscow, 1982.Google Scholar
  15. 15.
    Bobyleva, M. S.; Kiselev, A. V.; Kulikov, N. S.; Polotnyuk E. B.; Shcherbakova, K. D. Adsorption Sci. Technol. 1985, 2, 165.Google Scholar
  16. 16.
    Buryak, A. K.; Dallakyan P. B.; Kiselev, A. V. Dokl. Acad. Nauk SSSR. 1985, 282, 349.Google Scholar
  17. 17.
    Dallakyan, P. B.; Petrova, R. S.; Khudyakov, V. L. Zh. Fiz. Khim. 1988, 62, 2272.Google Scholar
  18. 18.
    Kiselev, A. V., Poshkus, D. P.; Afreimovich, A. Ya. Zh. Fiz. Khim. 1968, 42, 2546.Google Scholar
  19. 19.
    Eliel, E. L., Allinger, N. L., Angyal, S. J.; Morrison, G. A. Conformational Analysis; Wiley-Interscience, New York, 1965.Google Scholar
  20. 20.
    Engevald, W., Kalashnikova, E. V., Kiselev, A. V., Petrova, R. S., Shcherbakova, K. D.; Shilov, A. L. J. Chromatogr. 1978, 152, 453.Google Scholar
  21. 21.
    Braun, J.; Bayer, O. Chem. Ber. 1926, 59, 2317.Google Scholar
  22. 22.
    Kharchenko, V. G.; Yudovich L. M.; Smimova, N. S. Zh. Org. Khim. 1987, 23, 576.Google Scholar
  23. 23.
    Kharchenko, V. G.; N. S. Smimova N. S.; Yudovich, L. M. Khim. Geterolsikl. Soedin. 1990, p. 1011.Google Scholar
  24. 24.
    Yudovich, L. M. Ph. D. Thesis, Saratov, 1988.Google Scholar
  25. 25.
    Blinokhvatov, A. F. Ph. D. Thesis, Saratov, 1970.Google Scholar
  26. 26.
    Kharchenko, V. G.; Blinokhvatov, A. F. Khim. Geterotsikl. Soedin. 1978, p. 1615.Google Scholar
  27. 27.
    Bobyleva M. S.; Kulikov, N. S. J. Chem. Soc. Perkin Trans. 2 1998, p. 951.Google Scholar
  28. 28.
    Keyes A. G.; Harrison, A. G. J. Amer. Chem. Soc. 1968, 90, 5671Google Scholar
  29. 29.
    Kharchenko, V. G.; Martemyanova, N. L.; N. D. Zaytzeva N. D.; Kuramshin, M. I. Zh. Org. Khim. 1976, 12, 1802.Google Scholar
  30. 30.
    Kharchenko, V. G.; Yudovich, L. M.; Bozhenova O. A.; Shebaldova, A. D. Khim. Geterotsikl. Soedin. 1987, N9, 1187.Google Scholar
  31. 31.
    Metzger, P.; C. Cabestaing, C.; Casadevall E.; Casadevall, A. Organ. Magn. Reson. 1982, 19, 144.Google Scholar
  32. 32.
    Kulikov N. S.; Bobyleva, M. S. J. Chem. Soc. Perkin Trans. 2 2000, p. 571.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Nickolay S. Kulikov
    • 1
  • Marina S. Bobyleva
    • 1
  1. 1.Faculty of ChemistryM. V. Lomonosov State University, Vorob'evy goryMoscowRussia

Personalised recommendations