Space Science Reviews

, Volume 113, Issue 1–2, pp 127–206 | Cite as

Potential Plasma Instabilities For Substorm Expansion Onsets

  • A.T.Y. Lui


Space plasmas present intriguing and challenging puzzles to the space community. Energy accessible to excite instabilities exists in a variety of forms, particularly for the magnetospheric environment prior to substorm expansion onsets. A general consensus of the pre-expansion magnetosphere is the development of a thin current sheet in the near-Earth magnetosphere. This review starts with a short account of the two major substorm paradigms. Highlights of some observations pertaining to the consideration of potential plasma instabilities for substorm expansion are given. Since a common thread of these paradigms is the development of a thin current sheet, several efforts to model analytically a thin current sheet configuration are described. This leads to a review on the instability analyses of several prominent candidates for the physical process responsible for substorm expansion onset. The potential instabilities expounded in this review include the cross-field current, lower-hybrid-drift, drift kink/sausage, current driven Alfvénic, Kelvin-Helmholtz, tearing, and entropy anti-diffusion instabilities. Some recent results from plasma simulations relevant to the investigation of these plasma instabilities are shown. Although some of these instabilities are generally conceived to be excited in spatially localized regions in the magnetosphere, their potentials in yielding global consequences are also explored.


Entropy General Consensus Global Consequence Space Plasma Common Thread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, B.-H., Kamide, Y., Kroehl, H. W., Candidi, M. and Murphree, J. S. 1995. ‘Substorm changes of the electrodynamic quantities in the polar ionosphere’, J. Geophys. Res., 100, 23845–23856.CrossRefADSGoogle Scholar
  2. Akasofu, S.-I.: 1964. ‘The development of the auroral substorm’, Planet. Space Sci., 12, 273–282.CrossRefADSGoogle Scholar
  3. Akasofu, S.-I.: 1963, ’ Polar and Magnetospheric Substorms’, D. Reidel, Norwell, Mass.Google Scholar
  4. Akasofu, S.-I.: 2003, ‘A source of auroral electrons and the magnetospheric substorm current systems’, J. Geophys. Res., 108 (A4), 8006, doi:10.1029/2002JA009547.CrossRefGoogle Scholar
  5. Akasofu, S.-I.: 2004, ‘Several ‘controversial’ issues on substorms’, this issue.Google Scholar
  6. Angelopoulos, V., Coroniti, F. V., Kennel, C. F., Kivelson, M. G., Walker, R. J. and Russell, C. T.: 1996, ‘Multipoint analysis of a bursty bulk flow event on April 11, 1985’, J. Geophys. Res., 101, 4967–4990.CrossRefADSGoogle Scholar
  7. Ashour-Abdalla, M. El-Alaoui, Peroomian, V., Walker, R. J., Zelenyi, L. M., Frank, L. A. and Paterson, W. R.: 1999, ‘Localized reconnection and substorm onset on December 22, 1996’, Geophys. Res. Lett., 26, 3545–3548.CrossRefADSGoogle Scholar
  8. Atkinson, G.: 1967, ‘An approximate flow equation for geomagnetic flux tubes and its application to polar substorms’, J. Geophys. Res., 72, 5373–5382.ADSGoogle Scholar
  9. Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann W. and McPherron, R. L.: 1996, ‘Neutral line model of substorms: Past results and present view’, J. Geophys. Res., 101, 12975–13010.CrossRefADSGoogle Scholar
  10. Baker, D. N., Peterson, W. K., Eriksson, S., Li, X., Blake, J. B. and Burch, J. L.: 2002, ‘Timing of magnetic reconnection initiation during a global magnetospheric substorm onset’, Geophys. Res. Lett., 29(24), 2190, 10.1029/2002GL015539.CrossRefADSGoogle Scholar
  11. Birdsall C. K. and A. B. Langdon: 1985, ’ Plasma physics via computer simulation’, McGraw-Hill, New York.Google Scholar
  12. Birn, J.: 1991, ‘The boundary value problem of magnetotail eqiulibrium, J. Geophys. Res., 96, 19441–19450.ADSGoogle Scholar
  13. Birn, J. and Schindler, K.: 2002, ‘Thin current sheets in the magneotail and the loss of equilibrium’, J. Geophys. Res., 107, A7, 10.1029/2001JA000291.CrossRefGoogle Scholar
  14. Birn, J., R. Sommer and K. Schindler: ‘Open and closed magnetospheric tail configurations and their stability’, Astrophys. Space Sci., 35, 389–402.Google Scholar
  15. Birn, J., Hesse, M., Haerendel, G., Baumjohann, W. and Shiokawa, K.: 1999, ‘Flow braking and the substorm current wedge’, J. Geophys. Res., 104, 19895–19903.CrossRefADSGoogle Scholar
  16. Boström, R.: 1984, ‘A model of the auroral electrojets’, J. Geophys. Res., 69, 4983–4999.ADSGoogle Scholar
  17. Brackbill, J. U., Forslund, D. W., Quest, K. B. and Winske, D.: 1984, ‘Nonlinear evolution of the lower hybrid instability’, Phys. Fluids, 27, 2682.CrossRefzbMATHADSGoogle Scholar
  18. Brittnacher, M., Quest, K. B. and Karimabadi, H.: 1998, ‘A study of the effect of pitch angle and spatial diffusion on tearing instability using a new finite element based linear code’, J. Geophys. Res., 103, 4587–4596.CrossRefADSGoogle Scholar
  19. Büchner, J. and Kuska, J.-P.: 1999, ‘Sausage mode instability of thin current sheets as a cause of magnetospheric substorms’, Ann. Geophys., 17, 604–612.ADSGoogle Scholar
  20. Burkhart, G. R., Drake, J. F., Dusenbery, P. B. and Speiser, T. W.: 1992, ‘A particle model for magnetotail neutral sheet equilibria’, J. Geophys. Res., 97, 13799–13815.ADSGoogle Scholar
  21. Cattell, C. A., Mozer, F. S., Anderson, R. R., Hones, E. W. Jr., Sharp, R. D.: 1986, ‘ISEE observations of the plasma sheet boundary, plasma sheet, and neutral sheet. 2-waves, J. Geophys. Res., 91, 5681–5688.ADSGoogle Scholar
  22. Cattell, C. A., Dombeck, J., Wygant, J. R., Hudson, M. K., Mozer, F. S. and Temerin, M. A.: 1999, ‘Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high-altitude cusp to those in the auroral zone’, Geophys. Res. Lett., 26, 425–428.CrossRefADSGoogle Scholar
  23. Cattell, C. A., Neiman, C., Dombeck, J., Crumley, J., Wygant, J. and Kletzing, C. A.: 2003, ‘Large amplitude solitary waves in and near the Earth’s magnetosphere, magnetopause and bow shock: Polar and Cluster observations’, Nonlinear Processes in Geophysics, 10, 13–26.ADSGoogle Scholar
  24. Chang, C. L., Wong, H. K. and Wu, C. S.: 1990, ‘Electromagnetic instabilities attributed to a cross-field ion drift’, Phys. Rev. Lett., 65, 1104–1107.PubMedCrossRefADSGoogle Scholar
  25. Chang, T.: 1992, ‘Low dimensional behavior and symmetry breaking of stochastic systems near criticality-can these effects be observed in space and in the laboratory?’, IEEE Trans. Plasma Sci., 20, 691–694.CrossRefADSGoogle Scholar
  26. Chang, T.: 1999, ‘Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail’, Physics of Plasmas, 6, 4137–4145.CrossRefADSGoogle Scholar
  27. Chao, J. K., Kan, J. R., Lui, A. T. Y., Akasofu, S.-I.: 1977, ‘A model of thinning of the plasma sheet’, Planet. Space Sci. 25, 703–710.CrossRefADSGoogle Scholar
  28. Chapman, S. C., Watkins, N. W., Dendy, R. O., Helander, P. and Rowlands, G.: 1998, ‘A simple avalanche model as an analogue for magnetospheric activity’, Geophys. Res. Lett., 25, 2397–2400.CrossRefADSGoogle Scholar
  29. Chen, J., Burkhart, G. R. and Huang, C. Y.: 1990, ‘Observational signatures of nonlinear magnetotail particle dynamics’, Geophys. Res. Lett., 17, 2237–2240.ADSGoogle Scholar
  30. Cheng, C. Z.: 2004, ‘Physics of substorm growth phase, onset, and dipolarization’, this issue.Google Scholar
  31. Cheng, C. Z. and Lui, A. T. Y.: 1998, ‘Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE’, Geophys. Res. Lett., 25, 4091–4094.CrossRefADSGoogle Scholar
  32. Consolini, G.: 1997, ‘Sandpile cellular automata and magnetospheric dynamics’, Proceedings of Cosmic Physics in the Year 2000, 58, edited by S. Aiello et al., Società Italiana di Fisica, Bologna, Italy.Google Scholar
  33. Coppi, B., Laval G. and Pellat, R.: 1966, ‘Dynamics of the geomagnetic tail’, Phys. Rev. Lett., 16, 1207–1210.CrossRefADSGoogle Scholar
  34. Cowley, S. W. H.: 1978, ‘The effect of pressure anisotropy on the equilibrium structure of magnetic current sheets’, Planet. Space Sci., 26, 1037–1061.CrossRefADSGoogle Scholar
  35. Craven, J. D. and Frank, L. A.: 1991, ‘Diagnosis of auroral dynamics using global auroral imaging with emphasis on large-scale evolutions, in Auoral Physics, edited. by. Meng, C.-I., Rycroft, M. J. and Frank, L. A., Cambridge Univ. Press, England, p. 273.Google Scholar
  36. Daughton, W.: 1998, ‘Kinetic theory of the drift kink instability in a current sheet’, J. Geophys. Res., 103, 29429–29443.CrossRefADSGoogle Scholar
  37. Daughton, W.: 1999, ‘Two-fluid theory of the drift kink instability’, J. Geophys. Res., 104, 28701–28707.CrossRefADSGoogle Scholar
  38. Eastwood, J. W.: 1972, ‘Consistency of fields and particle motion in the “Speiser” model of the current sheet’, Planet Space Sci., 20, 1555.CrossRefADSGoogle Scholar
  39. El-Alaoui, M.: 2001, ‘Current disruption during November 24, 1996, substorm’, J. Geophys. Res., 106, 6229–6245.CrossRefADSGoogle Scholar
  40. Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T. and Peria, W.: 1998, ‘FAST satellite observations of large-amplitude solitary structures’, Geophys. Res. Lett., 25, 2041–2044.CrossRefADSGoogle Scholar
  41. Erickson, G. M.: 1995, ‘Substorm theories: United they stand, divided they fall’, Rev. Geophys., 33, 685–692.CrossRefADSGoogle Scholar
  42. Erickson, G. M., Maynard, N. C., Burke, W. J., Wilson, G. R. and Heinemann, M. A.: 2000, ‘Electro-magnetics of substorm onsets in the near-geosynchronous plasma sheet’, J. Geophys. Res., 105, 25265–25290.CrossRefADSGoogle Scholar
  43. Fedder, J. A., Slinker, S. P., Lyon, J. G. and Elphinstone, R. D.: 1995, ‘Global numerical simulation of the growth phase and the expansion phase onset for a substorm observed by Viking, J. Geophys. Res., 100, 19083–19094.CrossRefADSGoogle Scholar
  44. Fillingim, M., Parks, G. K., Chen, L. J., McCarthy, M., Spann, J., Lin, R. P.: 2001, ‘Comparison of plasma sheet dynamics during pseudobreakups and expansive aurorae’, Physics of Plasmas, 8, 1127–1132.CrossRefADSGoogle Scholar
  45. Francfort, P. and Pellat, R.: 1976, ‘Magnetic merging in collisionless plasmas’, Geophys. Res. Lett., 3, 433–436.ADSGoogle Scholar
  46. Frank, L. A., Sigwarth, J. B., Paterson, W. R. and Kokubun, S.: 2001, ‘Two encounters of the substorm onset region with the Geotail spacecraft’, J. Geophys. Res., 106, 5811–5831.CrossRefADSGoogle Scholar
  47. Frank, L. A., Paterson, W. R., Sigwarth, J. B. and Mukai, T.: 2001, ‘Observations of plasma sheet dynamics earthward of the onset region with the Geotail spacecraft’, J. Geophys. Res., 106, 18823–18841.CrossRefADSGoogle Scholar
  48. Gjerloev, J. W. and Hoffman, R.A.: 2002, Currents in auroral substorms, J. Geophys. Res., 107(A8), SMP 5, doi: 10.1029/2001JA000194.CrossRefGoogle Scholar
  49. Gladd N. T.: 1976, ‘The lower hybrid drift instability and the modified two stream instability in high density theta pinch environments’, Plasma Phys., 18, 27–40.CrossRefADSGoogle Scholar
  50. Gurnett, D. A., Frank, L. A. and Lepping, R. P.: 1976, ‘Plasma waves in the distant magnetotail’, J. Geophys. Res., 81, 6059–6071.ADSGoogle Scholar
  51. Haerendel, G.: 1992, ‘Disruption, ballooning or auroral avalanche’, Proceedings of the First International Conference on Substorms, ESA SP-335, Kiruna, Sweden, 23-27 March 1992, 417.Google Scholar
  52. Haerendel, G.: 2000, ‘Outstanding issues in understanding the dynamics of the inner plasma sheet and ring current during storms and substorms’, Adv. Space Res., 25, 2379–2388.CrossRefADSGoogle Scholar
  53. Harris, E. G.: 1962, ‘The equilibrium of oppositely directed magnetic fields’, Nuovo Cimento, 23, 115–121.zbMATHGoogle Scholar
  54. Hesse, M. and Birn, J.: 2000, ‘Near-and mid-tail current flow during substorms: Small-and large-scale aspects of current disruption’, Magnetospheric Current Systems, edited by Ohtani, S., Fujii, R., Hesse, M. and Lysak, R. L. Geophys. Mon. 118, AGU, Washington, D.C., p. 295–303.Google Scholar
  55. Hill, T. W.: 1993, ‘Magnetic merging in a collisionless plasma’, J. Geophys. Res., 80, 4689–4699.ADSGoogle Scholar
  56. Hoffman, R. A., Fuji, R. and Sugiura, M.: 1994, Characteristics of the field-aligned current system in the nighttime sector during auroral substorms, J. Geophys. Res., 99, 21303–21325CrossRefADSGoogle Scholar
  57. Holland, D. L. and Chen, J.: 1993, ‘Self-consistent current sheet structures in the quiet-time magnetotail’, Geophys. Res. Lett., 20, 1775–1778.ADSGoogle Scholar
  58. Horiuchi, R. and Sato, T., 1999: Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet, Phys. Plasmas, 6, 4565–4574.CrossRefADSGoogle Scholar
  59. Huba, J. D. and Papadopoulos, K.: 1978, ‘Nonlinear stabilization of the lower hybrid drift instability by electron resonance broadening, Phys. Fluids, 21, 121–123.CrossRefADSGoogle Scholar
  60. Huba, J. D., Gladd, N. T. and Papadopoulos, K.: 1977, ‘The lower-hybrid-drift instability as a source of anomalous resistivity for magnetic field line reconnection’, Geophys. Res. Lett., 4, 125–128.ADSGoogle Scholar
  61. Huba, J. D., Gladd, N. T. and Drake, J. F.: 1981, ‘On the role of the lower hybrid drift instability in substorm dynamics’, J. Geophys. Res., 86, 5881–5884.ADSGoogle Scholar
  62. Iijima, T., Potemra, T. A. and Zanetti, L. J.: 1990, ‘Large-scale characteristics of magnetospheric equatorial currents’, J. Geophys. Res., 95, 991–999.ADSGoogle Scholar
  63. Jacquey, C., Sauvaud, J. A., Dandouras, J.: 1991, ‘Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event’, Geophys. Res. Lett., 18, 389–392.ADSGoogle Scholar
  64. Jacquey, C., Sauvaud, J. A., Dandouras, J. and Korth, A.: 1993, ‘Tailward propagating cross-tail cur-rent disruption and dynamics of near-Earth tail: A multi-point measurement analysis’, Geophys. Res. Lett., 20, 983–986.ADSGoogle Scholar
  65. Kamide Y.: 1996, ‘The substorm current system: Predicting specific features’, Proc. ICS-3, ESA SP-389, 5–10.Google Scholar
  66. Kamide, Y., Richmond, A. D., Emery, B. A., Hutchins, C. F., Ahn, B.-H. and de La Beaujardiere, O.: 1994, ‘Ground-based studies of ionospheric convection associated with substorm expansion’, J. Geophys. Res., 99, 19451–19466.CrossRefADSGoogle Scholar
  67. Kan, J. R.: 1973, On the structure of the magnetotail current sheet, J. Geophys. Res., 78, 3773–3781.ADSGoogle Scholar
  68. Kan, J. R.: 1998, ‘A globally integrated substorm model: Tail reconnection and magnetosphere-ionosphere coupling, J. Geophys. Res., 103, 11787–11795.CrossRefADSGoogle Scholar
  69. Klimas, A. J., Valdivia, J. A., Vassiliadis, D., Baker, D. N., Hesse, M., Takalo, J., ‘Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet’, J. Geophys. Res., 105, 18765–18780.Google Scholar
  70. Kropotkin, A. P., Malova, H. V. and Sitnov, M. I.: 1997, ‘Self-consistent structure of a thin anisotropic current sheet’, J. Geophys. Res., 102, 22099–22106.CrossRefADSGoogle Scholar
  71. Lapenta, G. and Brackbill, J. U.: 1997, ‘A kinetic theory for the drift-kink instability’, J. Geophys. Res., 102, 27099–27108.CrossRefADSGoogle Scholar
  72. Le Contel, O., Pellat, R. and Roux, A.: 2000a, ‘Self-consistent quasi-static radial transport during the substorm growth phase’, J. Geophys. Res., 105, 12929.CrossRefADSGoogle Scholar
  73. Le Contel, O., Pellat, R. and Roux, A.: 2000b, ‘Self-consistent quasi-static parallel electric field associated with substorm growth phase’, J. Geophys. Res., 105, 12945.CrossRefADSGoogle Scholar
  74. Le Contel, O., Perraut, S., Roux, A. and Pellat, R.: 2001, ‘Plasma transport during substorm growth phase and relation to breakup’, Space Sci. Rev., 95, 415–426.CrossRefGoogle Scholar
  75. Lee, L. C., Zhang, L., Choe, G. S. and Cai, H. J.: 1995, ‘Formation of a very thin current sheet in the near-earth magnetotail and the explosive growth phase of substorms’, Geophys. Res. Lett., 22, 1137–1140.CrossRefADSGoogle Scholar
  76. Lee, L. C., Zhang, L., Otto, A., Choe, G. S. and Cai, H. J.: 1998, ‘Entropy antidiffusion instability and formation of a thin current sheet during geomagnetic substorms’, J. Geophys. Res., 103, 29419–29428.CrossRefADSGoogle Scholar
  77. Lembége, B. and Pellat, R., 1982, ‘Stability of a thick two-dimensional quasineutral sheet’, Phys. Fluids, 25, 1995–2004.CrossRefzbMATHADSGoogle Scholar
  78. Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T., Brittnacher, M. and Parks, G.: 1999: ‘On relative timing in substorm onset signatures’, J. Geophys. Res., 104, 22,807.ADSGoogle Scholar
  79. Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T. and Anderson, R. R.: 2000, ‘Auroral kilometric radiation (AKR) at substorm onset’, J. Geophys. Res., 105, 25,325.ADSGoogle Scholar
  80. Liou, K., Newell, P. T., Sibeck, D. G., Meng, C.-I., Brittnacher, M. and Parks, G.: 2001, ‘Observation of IMF and seasonal effects in the location of auroral substorm onset’, J. Geophys. Res., 106, 5799–5810.CrossRefADSGoogle Scholar
  81. Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T. and Wing, S.: 2002, ‘Magnetic dipolarization with substorm expansion onset’, J. Geophys. Res., 107, 10.1029/2001JA000179.Google Scholar
  82. Lopez, R. E., Lühr, H., Anderson, B. J., Newell, P. T. and McEntire, R. W.: 1990, ‘Multipoint observations of a small substorm’, J. Geophys. Res., 95, 18,897–18,912.ADSGoogle Scholar
  83. Lu, G., Tsyganenko, N. A., Lui, A. T. Y., Singer, H. J., Nagai, T., Kokubun, S.: 1999, Modeling of time-evolving magnetic fields during substorms, J. Geophys. Res., 104, 12327–12337.CrossRefADSGoogle Scholar
  84. Lui, A. T. Y.: 1978, ‘Estimates of current changes in the geomagnetotail associated with a substorm’, Geophys. Res. Lett., 5, 853–856.ADSGoogle Scholar
  85. Lui, A. T. Y.: 1991, ‘A synthesis of magnetospheric substorm models’, J. Geophys. Res., 96, 1849–1856.ADSGoogle Scholar
  86. Lui, A. T. Y.: 1992, ‘Role of cross-field current instability in substorm onsets and intensifications, Proceedings on the International Conference on Substorms (ICS-1), Kiruna, Sweden, 213–218.Google Scholar
  87. Lui, A. T. Y.: 2000a, ‘Highlights on how to interpret auroral observation in terms of plasma sheet processes’, Proc. 5 th International Conference on Substorms, St. Petersburg, Russia, May 16-20, 2000, ESA SP-443, p. 231–234.Google Scholar
  88. Lui, A. T. Y.: 2000b, ‘Electric current approach to magnetospheric dynamics and the distinction between current disruption and magnetic reconnection’, Magnetospheric Current Systems,AGU Monograph 118, AGU, Washington, DC, pp. 31–40.Google Scholar
  89. Lui, A. T. Y.: 2001, ‘A multiscale model for substorms’, Space Sci. Rev., 95, 325–345.CrossRefADSGoogle Scholar
  90. Lui, A. T. Y. and Kamide, Y.: 2003, ‘A fresh perspective of the substorm current system and its dynamo’, Geophys. Res. Lett., 30,( 18), 1958, doi:10.1029/2003GL017835.CrossRefADSGoogle Scholar
  91. Lui, A. T. Y. and Murphree, J. S.: 1998, ‘A substorm model with onset location tied to an auroral arc’, Geophys. Res. Lett., 25, 1269–1272.CrossRefADSGoogle Scholar
  92. Lui A. T. Y. and Najmi, A.-H.: 1997, ‘Time-frequency decomposition of signals in a current disruption event’, Geophys. Res. Lett., 24, 3157.CrossRefADSGoogle Scholar
  93. Lui, A. T. Y., Frank, L. A., Ackerson, K. L., Meng C.-I. and Akasofu, S.-I.: 1977, ‘Systematic study of plasma flow during plasma sheet thinnings’, J. Geophys. Res., 82, 4815–4825.ADSGoogle Scholar
  94. Lui, A. T. Y., McEntire, R. W. and Krimigis, S. M.: 1987, ‘Evolution of the ring current during two geomagnetic storms’, J. Geophys. Res., 92, 7459–7470.ADSGoogle Scholar
  95. Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H.-K. and Winske, D.: 1991, ‘A cross-field current instability for substorm expansions’, J. Geophys. Res., 96, 11389–11401.ADSGoogle Scholar
  96. Lui, A. T. Y., Lopez, R. E., Anderson, B. J., Takahashi, K., Zanetti, L. J. and McEntire, R. W.: 1992, ‘Current disruptions in the near-Earth neutral sheet region’, J. Geophys. Res., 97, 1461–1480.ADSGoogle Scholar
  97. Lui, A. T. Y., Yoon P. H. and Chang, C.-L.: 1993, ‘Quasi-linear analysis of ion Weibel instability’, J. Geophys. Res., 98, 153–163.ADSGoogle Scholar
  98. Lui, A. T. Y., Spence, H. E. and Stern, D. P.: 1994, ‘Empirical modeling of the quiet time nightside magnetosphere’, J. Geophys. Res., 99, 151–157.CrossRefADSGoogle Scholar
  99. Lui, A. T. Y., Chang, C-L. and Yoon, P. H.: 1995, ‘Preliminary nonlocal analysis of cross-field current instability for substorm expansion onset’, J. Geophys. Res., 100, 19147–19154.CrossRefADSGoogle Scholar
  100. Lui, A. T. Y., Liou, K., Newell, P. T., Meng, C.-I., Ohtani, S.-I. and Kokubun, S.: 1998, ‘Plasma and magnetic flux transport associated with auroral breakups’, Geophys. Res. Lett., 25, 4059–4062.CrossRefADSGoogle Scholar
  101. Lui, A. T. Y., Liou, K., Nosé, M., Ohtani, S., Williams, D. J. and Mukai, T.: 1999, ‘Near-Earth dipolarization: Evidence for a non-MHD process’, Geophys. Res. Lett., 26, 2905–2908.CrossRefADSGoogle Scholar
  102. Lui, A. T. Y., Chapman, S. C., Liou, K., Newell, P. T., Meng, C.-I. and Brittnacher, M.: 2000, ‘Is the dynamic magnetosphere an avalanching system?’, Geophys. Res. Lett., 27, 911–914.CrossRefADSGoogle Scholar
  103. Lyu, L. H. and Chen, M. Q.: 2000, ‘A kinetic M-I coupling model with unloading instability at onset of substorms’, Proc. Fifth International Conference on Substorms, St. Petersburg, Russia, 16-20 May 2000, ESA-SP-443, p. 315–318.Google Scholar
  104. Matsumoto H., Kojima, H., Miyatake, T., Omura, Y., Okada, M. and Nagano, I.: 1994, ‘Electrostatic solitary waves (ESW) in the magnetotail: BEN waveforms observed by Geotail, Geophys. Res. Lett., 21, 2915–2918.CrossRefADSGoogle Scholar
  105. Matsumoto, H., Frank, L. A., Omura, Y., Kojima, H., Paterson, W. R. and Tsutsui, M.: 1999, ‘Gen-eration mechanism of ESWbased on Geotail wave observation, plasma observation, and particle simulation’, Geophys. Res. Lett., 26, 421–424.CrossRefADSGoogle Scholar
  106. Maynard, N. C., Burke, W. J., Basinska, E. M., Erickson, G. M., Hughes, W. J. and Singer, H. J.: 1996, ‘Dynamics of the inner magnetosphere near times of substorm onsets’, J. Geophys. Res., 101, 7705–7736.CrossRefADSGoogle Scholar
  107. McBride, J. B., Ott, E., Boris, J. P., and Orens, J. H.: 1972, ‘Theory and simulation of turbulent heating by the modified two-stream instability’, Phys. Fluids, 15, 2367.CrossRefADSGoogle Scholar
  108. McIlwain, C. E.: 1974, ‘Substorm injection boundaries’, in Magnetospheric Physics, edited. by McCormac, B. M., p. 143–154, Reidel, D., Hingham, Mass.Google Scholar
  109. McPherron, R. L.: 1970, ‘Growth phase of magnetospheric substorms’ J. Geophys. Res., 75, 5592–5599.ADSGoogle Scholar
  110. McPherron, R. L., Russell, C. T. and Aubry, M.: 1973, ‘Satellite studies of magnetospheric substorms on August 15, 1968, 9, Phenomenological model for substorms’, J. Geophys. Res., 78, 3131–3149.ADSGoogle Scholar
  111. Mende, S. B., Frey, H. U., Immel, T. J., Mithcell, D. G., C:son-Brandt, P. and Gérard, J.-C.: 2002, ‘Global comparison of magnetospheric ion fluxes and auroral precipitation during a substorm’, Geophys. Res. Lett., 29(12), 1609, doi: 10.1029/2001GL014143.CrossRefADSGoogle Scholar
  112. Mende, S. B., Carlson, C. W., Frey, H. U., Peticolas, L. M. and østgaard, N.: 2003a, ‘FAST and IMAGE-FUV observations of a substorm onset’; J. Geophys. Res., 108, A9, 1344, doi: 10.1029/2002JA009787.CrossRefGoogle Scholar
  113. Mende, S. B., Frey, H. U., Immel, T. J., Gérard, J.-C., Hubert, B. and Fuselier, S. A.: 2003b, ‘Global imaging of proton and electron auroras in the far ultraviolet’, Space Sci. Rev., 109, 211–254, 2003b.CrossRefADSGoogle Scholar
  114. Meng, C.-I. and Liou, K: 2004, ‘Substorm timings and timescales: A new aspect’, this issue.Google Scholar
  115. Miyashita, Y., Machida, S., Mukai, T., Saito, Y., Tsuruda, K. and Hayakawa, H.: 2000, ‘A statist-ical study of variations in the near and middistant magnetotail associated with substorm onsets: GEOTAIL observations’, J. Geophys. Res., 105, 15913–1593CrossRefADSGoogle Scholar
  116. Nagai, T.: 1987, ‘Field-aligned currents associated with substorms in the vicinity of synchronous orbit, 2. GOES 2 and GOES 3 observations’, J. Geophys. Res., 92, 2432–2446.ADSGoogle Scholar
  117. Nagai, T., Fujimoto, M., Saito, Y., Machida, S., Terasawa, T. and Nakamura, R.: 1998, ‘Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations’, J. Geophys. Res., 103, 4419–4440.CrossRefADSGoogle Scholar
  118. Nagai, T., Shinohara, I., Fujimoto, M., Hoshino, M., Saito, Y. and Machida, S.: 2001, ‘Geotail ob-servations of the Hall current system: Evidence of magnetic reconnection in the magnetotail’, J.Geophys. Res., 106, 25929–25949.CrossRefADSGoogle Scholar
  119. Nakamura, R., Baumjohann, W., Runov, A., Volwerk, M., Zhang, T. L. and Klecker, B.: 2002, ‘Fast flow during current sheet thinning’, Geophys. Res. Lett., 29(23), 10.1029/2002GL016200.Google Scholar
  120. Newell, P. T., Liou, K., Sotirelis, T. and Meng, C.-I.: 2001, ‘Auroral precipitation power during substorms: A polar UV imager-based superposed epoch analysis’, J. Geophys. Res., 106, 28,885–28,896.ADSGoogle Scholar
  121. Nishida, A. and Hones, Jr., E. W.: 1974, ‘Association of plasma sheet thinning with neutral line formation in the magnetotail’, J. Geophys. Res., 79, 535–547.ADSGoogle Scholar
  122. Nötzel, A., Schindler, K. and Birn, J.: 1985, ‘On the cause of approximate pressure isotropy in the quiet near-Earth plasma sheet’, J. Geophys. Res., 90, 8293–8300.ADSGoogle Scholar
  123. Ohtani, S.-I.: 2001, ‘Substorm trigger processes in the magnetotail: recent observations and outstanding issues’, Space Sci. Rev., 95, 347–359.CrossRefADSGoogle Scholar
  124. Ohtani, S.-I.: 2004, ‘Flow bursts in the plasma sheet and auroral substorm onset: Observational constraints on connection between mid-tail and near-Earth substorm processes’, this issue.Google Scholar
  125. Ohtani, S., Takahashi, K. and Russell, C. T.: 1992a, ‘Radial expansion of the tail current disruption during substorms: A new approach to substorm onset region’, J. Geophys. Res., 97, 3129–3136.ADSGoogle Scholar
  126. Ohtani, S., Takahashi, S. K., Zanetti, L. J., Potemra, T. A., McEntire, R. W. and Iijima, T.: 1992b, ‘Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration: Explosive growth phase’, J. Geophys. Res., 97, 19311–19324.ADSGoogle Scholar
  127. Ohtani, S., Takahashi, K., Higuchi, T., Lui, A. T. Y. and Spence, H. E.: 1998, ‘AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations’, J. Geophys. Res., 103, 4671–4682.CrossRefADSGoogle Scholar
  128. Ohtani, S., Creutzberg, F., Mukai, T., Singer, H., Lui, A. T. Y. and Nakamura, M.: 1999, ‘Substorm onset timing: The December 31, 1995, event’, J. Geophys. Res., 104, 22713–22727.CrossRefADSGoogle Scholar
  129. Ozaki, M., Sato, T., Horiuchi, R. and Group, C. S.: 1996, ‘Electromagnetic instability and anomalous resistivity in a magnetic neutral sheet’, Phys. Plasmas, 3, 2265.CrossRefADSGoogle Scholar
  130. Parks, G. K.: 2004, ‘Why space physics needs to go beyond the MHD box’, this issue.Google Scholar
  131. Parks, G. K., Chen, L. J., McCarthy, M., Larson, D., Lin, R. and Phan, T.: 1998, ‘New observations of ion beams in the plasma sheet boundary layer’, Geophys. Res. Lett., 25, 3285–3288.CrossRefADSGoogle Scholar
  132. Parks, G. K., Chen, L. J., Fillingim, M. and McCarthy, M., 2001, ‘Kinetic characterization of plasma sheet dynamics’, Space Sci. Rev., 95, 237–255.CrossRefADSGoogle Scholar
  133. Pellat, R., Coroniti, F. V. and Pritchett, P. L., 1991: ‘Does ion tearing exist?’, Geophys. Res. Lett., 18, 143–146.ADSGoogle Scholar
  134. Pellinen, R. J. and Heikkila, W. J.: 1978, ‘Observations of auroral fading before breakup’, J. Geophys. Res., 83, 4207–4217.ADSGoogle Scholar
  135. Perraut, S., Le Contel, O., Roux, A., Pellat, R., Korth, A. and Holter, O.: 2000a, ‘Disruption of parallel current at substorm breakup’, Geophys. Res. Lett., 27, 4041–4044.CrossRefADSGoogle Scholar
  136. Perraut, S., Le Contel, O., Roux, A. and Pedersen, A.: 2000b, ‘Current-driven electromagnetic ion cyclotron instability at substorm onset’, J. Geophys. Res., 105, 21097–21107.CrossRefADSGoogle Scholar
  137. Perraut, S., Le Contel, O., Roux, A., Parks, G., Chua, D. and Hoshino, M.: 2003, ‘Substorm expan-sion phase: Observations from Geotail, Polar and IMAGE network’, J. Geophys. Res., 108, A4, 1159, doi:10.1029/2002JA009376.CrossRefGoogle Scholar
  138. Petrukovich, A. A., Sergeev, V. A., Zelenyi, L. M., Mukai, T., Yamamoto, T. and Kokubun, S.: 1998, Two spacecraft observations of a reconnection pulse during an auroral breakup, J. Geophys. Res., 103, 47–59.CrossRefADSGoogle Scholar
  139. Petrukovich, A. A., Mukai, T., Kokubun, S., Romanov, S. A., Saito, Y. and Yamamoto, T.: 1999, ‘Substorm-associated pressure variations in the magnetotail plasma sheet and lobe’, J. Geophys. Res., 104, 4501–4513.CrossRefADSGoogle Scholar
  140. Pritchett, P. L. and Coroniti, F. V.: 1996, ‘The role of the drift kink mode in destabilizing thin current sheets’, J. Geomag. Geoelectr., 48, 833–844.Google Scholar
  141. Pritchett, P. L. and Coroniti, F. V.: 2001, ‘Kinetic simulations of 3-D reconnection and magnetotail disruptions’, Earth Planets Space, 53, 635–643.ADSGoogle Scholar
  142. Pritchett, P. L. and Coroniti, F. V.: 2002, ‘Consequences of current interruption for plasma sheet dynamics’, J. Geophys. Res., 107, 1254, 10.1029/2001JA009000.CrossRefGoogle Scholar
  143. Raeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G. and Mukai, T.: 2001, ‘Global simu-lation of the Geospace Environment Modeling substorm challenge event’, J. Geophys. Res., 106, 381–395.CrossRefADSGoogle Scholar
  144. Rich, F. J., Vasyliunas, V. M. and Wolf, R. A.: 1972, ‘On the balance of stresses in the plasma sheet’, J. Geophys. Res., 77, 4670–4676, 1972.ADSGoogle Scholar
  145. Rostoker, G.: 2002, ‘Identification of substorm expansive phase onsets’, J. Geophys. Res., 107, A7, 10.1029/2001JA003504.CrossRefGoogle Scholar
  146. Roux, A., Perraut, S., Robert, P., Morane, A., Pedersen, A. and Korth, A.: 1991, ‘Plasma sheet instability related to the westward traveling surge’, J. Geophys. Res., 96, 17697–17714.ADSGoogle Scholar
  147. Runov, A., Nakamura, R., Baumjohann, W., Treumann, R. A., Zhang, T. L. and Volwerk, M.: 2003 ‘Current sheet structure near magnetic X-line observed by Cluster’, Geophys. Res. Lett. 30 (11), 10.1029/2002GL016730.Google Scholar
  148. Schindler K.: 1972, ‘A self-consistent theory of the tail of the magnetosphere’, in Earth’s Magneto-spheric Processes, edited by McCormac, B.M., p. 200–209, Reidel, D., Norwell, Mass.Google Scholar
  149. Schindler, K.: 1974, ‘A theory of the substorm mechanism’, J. Geophys. Res., 79, 2803–2810.CrossRefADSGoogle Scholar
  150. Schindler, K. and Birn, J.: 2002, ‘Models of two-dimensional embedded thin current sheets from Vlasov theory’, J. Geophys. Res., 107, A8, 10.1029/2001JA000304.CrossRefGoogle Scholar
  151. Shinohara, I., Suzuki, H., Fujimoto, M. and Hoshino, M.: 2001, ‘Rapid large-scale magnetic-field dissipation in a collisionless current sheet via coupling between Kelvin-Helmholtz and lower-hybrid drift instabilities’, Phys. Rev. Lett., 87(9), 095001.PubMedCrossRefADSGoogle Scholar
  152. Shiokawa, K., Baumjohann, W. and Haerendel, G.: 1997, ‘Braking of high-speed flows in the near-Earth tail’, Geophys. Res. Lett., 24, 1179–1182.CrossRefADSGoogle Scholar
  153. Shiokawa, K., Haerendel, G. and Baumjohann, W.: 1998, ‘Azimuthal pressure gradient as driving force of substorm currents’, Geophys. Res. Lett., 25: 959–962.CrossRefADSGoogle Scholar
  154. Sigsbee, K., Cattell, C. A., Mozer, F. S., Tsuruda, K. and Kokubun S.: 2001, ‘Geotail observa-tions of low-frequency waves from 0.001 to 16 Hz during the November 24, 1996, Geospace Environment Modeling substorm challenge event’, J. Geophys. Res., 106, 435–446.CrossRefADSGoogle Scholar
  155. Sigsbee, K., Cattell, C. A., Fairfield, D., Tsuruda, K., Kokubun, S.: 2002, ‘Geotail observations of low-frequency waves and high-speed earthward flows during substorm onsets in the near magnetotail from 10 to 13 R E ‘, J. Geophys. Res., 107, A7, DOI 10.1029/2001JA000166.CrossRefGoogle Scholar
  156. Sitnov, M. I. and Lui, A. T. Y.: 1999, ‘Cross-field current instability as a catalyst of the explosive reconnection in the geomagnetotail’, J. Geophys. Res., 104, 6941–6951.CrossRefADSGoogle Scholar
  157. Sitnov, M. I., Malova, H. V. and Lui, A. T. Y.: 1997, ‘Quasineutral sheet filamentation instability induced by electron preferential acceleration from stochasticity’, J. Geophys. Res., 102, 163–173.CrossRefADSGoogle Scholar
  158. Sitnov, M. I., Malova, H. V., Zelenyi, L. M. and Sharma, A. S.: 2000a, ‘Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory’, J. Geophys. Res., 105, 13029–13044.CrossRefADSGoogle Scholar
  159. Sitnov, M. I., Sharma, A. S., Zelenyi, L. M. and Malova, H. V.: 2000b, ‘Distinctive features of forced current sheets: Electrostatic effects’, Proc. 5th International Conference on Substorms, St. Petersburg, Russia, May 16-20, 2000, ESA SP-443, p. 197–200.Google Scholar
  160. Sitnov, M. I., Guzdar, P. N. and Swisdak, M.: 2003, ‘A model of the bifurcated current sheet’, Geophys. Res. Lett., 30(13), 1712, doi:10.1029/2003GL017218.CrossRefGoogle Scholar
  161. Slinker, S. P., Fedder, J. A., Ruohoniemi, J. M. and Lyon, J. G.: 2001, ‘Global MHD simulation of the magnetosphere for November 24’, 1996, J. Geophys. Res., 106, 361–380.CrossRefADSGoogle Scholar
  162. Spence, H. E., Kivelson, M. G., Walker, R. J. and McComas, D. J.: 1989, ‘Magnetospheric plasma pressures in the midnight meridian: Observations from 2.5 to 35 R E, J. Geophys. Res., 94, 5264–5272.ADSGoogle Scholar
  163. Stiles, G. S., Hones, Jr., E. W., Bame, S. J. and Asbridge, J. R.: 1978, ‘Plasma sheet pressure anisotropies’, J. Geophys. Res., 83, 3166–3172.ADSGoogle Scholar
  164. Takahashi, K., Zanetti, L. J., Lopez, R. E., McEntire, R. W., Potemra, T. A. and Yumoto, K.: 1987, ‘Disruption of the magnetotail current sheet observed by AMPTE/CCE’, Geophys. Res. Lett., 14, 1019–1022.ADSGoogle Scholar
  165. Tanaka, T.: 2000, ‘The state transition model of the substorm onset’, J. Geophys. Res., 105, 21081–21096.CrossRefADSGoogle Scholar
  166. Tsurutani, B. T., Arballo, J. K., Lakhina, G. S., Ho, C. M., Buti, B. and Pickett, J. S.: 1998, ‘Plasma waves in the dayside polar cap boundary layer: Bipolar and monopolar electric pulses and whistler mode waves’, Geophys. Res. Lett., 25, 4117–4120.CrossRefADSGoogle Scholar
  167. Tsyganenko, N. A.: 1996, ‘Effects of the solar wind conditions on the global magnetospheric con-figuration as deduced from data-based field models’, in Proceedings of the ICS-3 conference, Versailles, France, May 12-17, 1996, Eur. space Agency spec. Publ., ESA., SP-389, 181.Google Scholar
  168. Uritsky, V. M., Klimas, A. J., Vassiliadis, D., Chua, D. and Parks, G.: 2002, ‘Scale-free statistics of spatiotemproal auroral emissions as depicted by Polar UVI images: The dynamic mag-netosphere is an avalanching system’, J. Geophys. Res., 107 (A12), SMP 7-1, p. 1426, doi: 10.1029/2001JA000281.CrossRefGoogle Scholar
  169. Voronkov, I., Rankin, R., Frycz, P., Tikhonchuk, V. T. and Samson, J. C.: 1997, ‘Coupling of shear flow and pressure gradient instabilities’, J. Geophys. Res., 102, 9639–9650.CrossRefADSGoogle Scholar
  170. Walker, G. W.: 1915, ‘Some problems illustrating the forms of nebulae’, Proc. R. Soc. London, Ser.A, 91, 410zbMATHADSGoogle Scholar
  171. LUI Wang, C.-P., Lyons, L.R., Chen, M.W. and Wolf, R.A.: 2001, ‘Modeling the quiet time inner plasma sheet protons’, J. Geophys. Res., 106, 6161–6178.CrossRefADSGoogle Scholar
  172. Wiechen, H., Büchner, J. and Otto, A.: 1995, ‘Reconnection in a dipole-dominated magnetosphere: A two-dimensional model’, J. Geophys. Res., 100, 19259–19266.CrossRefADSGoogle Scholar
  173. Wiechen, H., Büchner, J. and Otto, A., 1996, ‘Reconnection in the near-Earth plasma sheet: A three-dimensional model’, J. Geophys. Res., 101, 24911–24918.CrossRefADSGoogle Scholar
  174. Winglee, R. M., Skoug, R. M., Lui, A. T. Y., Lin, R. P., Lepping, R. L. and Kokubun, S.: 1998, ‘Magnetospheric/ionospheric activity during an isolated substorm’: a comparison between Wind/Geotail/IMP-8/CANOPUS observations and modeling, Geospace Mass and Energy Flow: Results From the International Solar-Terrestrial Physics Program, AGU Geophysical Mono-graph, 104, edited. Horwitz, J. L., Gallagher, D. L. and Peterson, W. K., p. 181–191.Google Scholar
  175. Winske, D.: 1981, ‘Current-driven microinstabilities in a neutral sheet’, Phys. Fluids, 22, 1069–1076CrossRefADSGoogle Scholar
  176. Yoon, P. H. and Lui, A. T. Y.: 1993, ‘Nonlinear analysis of generalized cross-field current instability’, Phys. FluidsB, 5 (3), 836–853.CrossRefADSGoogle Scholar
  177. Yoon, P. H. and Lui, A. T. Y.: 1996, ‘Nonlocal ion-Weibel instability in the geomagnetic tail’, J. Geophys. Res., 101, 4899–4906.CrossRefADSGoogle Scholar
  178. Yoon, P. H. and Lui, A. T. Y.: 2001, ‘Stabilization of lower-hybrid drift instability in the magnetotail by finite north-south magnetic field component, and destabilization by sheared cross-field drift speed’, J. Geophys. Res., 106, 13203–13213.CrossRefADSGoogle Scholar
  179. Yoon, P. H., Lui, A. T. Y. and Chang, C.-L.: 1994, ‘Lower-hybrid-drift instability operative in the geomagnetic tail’, Phys. Plasmas, 1 (9), 3033–3043.CrossRefADSGoogle Scholar
  180. Yoon, P. H., Drake, J. F. and Lui, A. T. Y.: 1996, ‘Theory and simulation of Kelvin-Helmholtz instability in the geomagnetic tail’, J. Geophys. Res., 101, 27327–27339.CrossRefADSGoogle Scholar
  181. Yoon, P.-H., Lui, A. T. Y. and Wong, H. K.: 1998, ‘Two-fluid theory of drift-kink instability in one-dimensional neutral sheet’, J. Geophys. Res., 103, 11875–11886.CrossRefADSGoogle Scholar
  182. Yoon, P. H., Lui, A. T. Y. and Sitnov, M. I.: 2002, ‘Generalized lower-hybrid drift instabilities in current-sheet equilibrium’, Phys. Plasmas, 9, 1526–1538.CrossRefADSGoogle Scholar
  183. Zelenyi, L. M., Petrukovich, A. A., Lutsenko, V. N. and Mogilevsky, M. M.: 2004, EOS, 85(17), 169, 172–173.ADSGoogle Scholar
  184. Zhu, Z. and Winglee, R. M.: 1996, ‘Tearing instability, flux rope, and the kinetic current sheet kink instability in the Earth’s magnetotail: A three-dimensional perspective from particle simulations’, J. Geophys. Res., 101, 4885–4898.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A.T.Y. Lui

There are no affiliations available

Personalised recommendations