Advertisement

Space Science Reviews

, Volume 110, Issue 1–2, pp 143–156 | Cite as

Radiation climate map for analyzing risks to astronauts on the mars surface from galactic cosmic rays

  • Premkumar B. Saganti
  • Francis A. Cucinotta
  • John W. Wilson
  • Lisa C. Simonsen
  • Cary Zeitlin
Article

Abstract

The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.

Keywords

Linear Energy Transfer Organ Dose Martian Atmosphere Mars Global Surveyor Martian Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badhwar, G., Space Science Reviews 110, 131–142.Google Scholar
  2. Badhwar, G. D., and O'Neill, P. M.: 1992, 'An Improved Model of GCR for Space Exploration Missions', Nucl. Tracks Radiat. Meas. 20, 403–410.CrossRefGoogle Scholar
  3. Badhwar, G. D., Cucinotta, F. A., and O'Neill, P. M.: 1994, 'An Analysis of Interplanetary Space Radiation Exposure for Various Solar Cycles', Radiat. Res. 138, 201–208.Google Scholar
  4. Billings, M. P., Yucker, W. R., and Heckman, B. R.: 1973, Body Self-Shielding Data Analysis, McDonald Douglas Astronautics Company West, MDC-G4131.Google Scholar
  5. Clowdsley, M. S., Wilson, J. W., Kim, M., Singleterry, R. C., Tripathi, R. K., Heinbockel, J. H., Badavi, F. F., and Shinn, J. L.: 2001, 'Neutron Environments on the Martian Surface', Physica Medica 17, 94–96.Google Scholar
  6. Cucinotta, F. A., and Dicello, J. F.: 2000, 'On the Development of Biophysical Models for Space Radiation Risk Assessment', Adv. Space. Res. 25, 2131–2140.CrossRefADSGoogle Scholar
  7. Cucinotta, F. A., Wilson, J.W., Katz, R., Atwell, W., and Badhwar, G. D.: 1995, 'Track Structure and Radiation Transport Models for Space Radiobiology Studies', Adv. in Space Res. 18, 183, 194-203.CrossRefADSGoogle Scholar
  8. Cucinotta, F. A., Wilson, J. W., Shinn, J. L., Tripathi, R. K., Maung, K. M., Badavi, F. F., Katz, R., and Dubey, R. D.: 1997, Computational Procedures and Data-Base Development. In NASA Workshop on Shielding Strategies for Human Space Exploration. Eds. Wilson, J. W., Miller, J., Konradi, A., and Cucinotta, F. A., NASA CP-3360.Google Scholar
  9. Cucinotta F. A., Nikjoo H., and Goodhead D. T.: 1998, 'The Effects of Delta Rays on The Number of Particle-Track Traversals per Cell in Laboratory and Space Exposures', Radiat. Res. 150, 115–119.Google Scholar
  10. Cucinotta, F. A., Wilson, J. W., Tripathi, R. K.; and Townsend, L. W.: 1998, 'Microscopic, Fragmentation Model For Galactic Cosmic Ray Studies', Adv. in Space Res. 22, 533–537.CrossRefADSGoogle Scholar
  11. Cucinotta, F. A., Manuel, F. K., Jones, J., Izsard, G., Murray, J., Djojenegoro, and Wear, M.: 2001, 'Space Radiation and Cataracts in Astronauts', Radiat. Res. 156, 460–466.CrossRefGoogle Scholar
  12. Cucinotta, F. A., Schimmerling, W., Wilson, J. W., Peterson, L. E., Badhwar, G. D., Saganti, P. B., and Dicello, J. F.: 2001, 'Space Radiation Cancer Risks and Uncertainties for Mars Missions', Radiat. Res. 156, 682–688.CrossRefGoogle Scholar
  13. Cucinotta, F. A., Badhwar, G. D., Saganti, P. B., Schimmerling, W., Wilson, J. W., Peterson, L., and Dicello, J.: 2002, Space Radiation Cancer Risk Projections for ExplorationMissions: Uncertainty Reduction and Mitigation, NASA TP-21077.Google Scholar
  14. National Academy of Sciences Space Science Board, HZE Particle Effects in Manned Space Flight, National Academy of Sciences U.S.A. Washington D.C., 1973.Google Scholar
  15. National Academy of Sciences, NAS. National Academy of Sciences Space Science Board, Report of the Task Group on the Biological Effects of Space Radiation. Radiation Hazards to Crews on Interplanetary Mission National Academy of Sciences, Washington, D.C., 1997.Google Scholar
  16. National Council on Radiation Protection and Measurements, Radiation Protection Guidance for Activities in Low Earth Orbit, NCRP Report 132, Bethesda MD, 2000.Google Scholar
  17. Simonsen L. C.: 1997, Analysis of Lunar and Mars Habitation Modules for the Space Exploration Initiative, Chapter-4 in Shielding Strategies for Human Space Exploration, Ed. J. W. Wilson, J. Miller, A. Konradi, and F. A. Cucinotta, NASA CP-3360, 43–77.Google Scholar
  18. Simonsen, L. C., Wilson, J. W., Kim, M. H., and Cucinotta, F. A.: 2000, 'Radiation Exposure for Human Mars Exploration', Health Phys. 79, 515–525.CrossRefGoogle Scholar
  19. Smith, D. E., Zuber, M. T., Solomon, S. C., Philips, R. J., Head, J. W., Garvin, J. B., et al.: 1999, 'The Global Topography of Mars and Implications for Surface Evolution', Science 284, 1495–1503.CrossRefADSGoogle Scholar
  20. Webber, W. R.: 1987, 'The Interstellar Cosmic Ray Spectrum and Energy Density. Interplanetary Cosmic Ray Gradients and a New Estimate of the Boundary of the Heliosphere', Astron. Astrophys. 179, 277–284.ADSGoogle Scholar
  21. Wilson J. W., Townsend, L. W., Schimmerling, W., Khandelwal G. S., Khan, F., Nealy, J. E., Cucinotta, F. A., Simonsen, L. C., and Norbury, J. W.: 1991, Transport methods and interactions for space radiations, NASA-RP1257.Google Scholar
  22. Zeitlin, C., Heilbronn, L., Miller, J., Rademacher, S. E., Borak, T., Carter, T. R., Frankel, K. A., Schimmerling, W., and Stronach. C. E.: 1997, 'Heavy Fragment Production Cross Sections for 1.05 GeV/nucleon 56Fe in C, AL, Cu, Pb, and CH2 Targets', Phys. Rev. C 56, 388–397.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Premkumar B. Saganti
    • 1
  • Francis A. Cucinotta
    • 2
  • John W. Wilson
    • 3
  • Lisa C. Simonsen
    • 3
  • Cary Zeitlin
    • 4
  1. 1.Lockheed Martin Space OperationsHoustonU.S.A
  2. 2.NASA Johnson Space CenterHoustonU.S.A
  3. 3.NASA Langley Research CenterHamptonU.S.A
  4. 4.Lawrence Berkeley National Laboratory, University of CaliforniaBerkeleyU.S.A

Personalised recommendations