Advertisement

Space Science Reviews

, Volume 110, Issue 1–2, pp 37–83 | Cite as

The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite

  • W.V. Boynton
  • W.C. Feldman
  • I.G. Mitrofanov
  • L.G. Evans
  • R.C. Reedy
  • S.W. Squyres
  • R. Starr
  • J.I. Trombka
  • C. d'Uston
  • J.R. Arnold
  • P.A.J. Englert
  • A.E. Metzger
  • H. Wänke
  • J. Brückner
  • D.M. Drake
  • C. Shinohara
  • C. Fellows
  • D.K. Hamara
  • K. Harshman
  • K. Kerry
  • C. Turner
  • M. Ward
  • H. Barthe
  • K.R. Fuller
  • S.A. Storms
  • G.W. Thornton
  • J.L. Longmire
  • M.L. Litvak
  • A.K. Ton'chev
Article

Abstract

The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.

Keywords

Thermal Neutron Epithermal Neutron Martian Atmosphere Martian Surface Neutron Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Ebihara, M.: 1982, 'Solar System Abundances of the Elements', Geochim. Cosmochim. Acta 46, 2363–2380.CrossRefADSGoogle Scholar
  2. Arnold, J. R., Metzger, A. E., Anderson, E. C. and Van Dilla, M. A.: 1962, 'Gamma Rays in Space, Ranger 3', J. Geophys. Res. 67, 4878–4880.ADSGoogle Scholar
  3. Arnold, J. R., Boynton, W. V., Englert, P. A. J., Feldman, W. C., Metzger, A. E., Reedy, R. C., Squyres, S. W., Trombka, J. I. and Wänke, H.: 1989, Scientific Considerations in the Design of the Mars Observer Gamma-Ray Spectrometer. In High-energy Radiation Background in Space (A. C. Rester, Jr. and J. I. Trombka, eds.), AIP Conf. Proc. 186, 453–466.Google Scholar
  4. Bandfield, J. L., Hamilton, V. E., and Christensen, P. R.: 2000, 'A Global View of Martian Surface Compositions from MGS-TES', Science 287, 1626–1630.CrossRefADSGoogle Scholar
  5. Bielefeld, M. J., Reedy, R. C., Metzger, A. E., Trombka, J. I. and Arnold, J. R.: 1976, 'Surface Chemistry of Selected Lunar Regions', Proc. Lunar Sci. Conf. 7th, 2661–2676.Google Scholar
  6. Boynton, W. V., Trombka, J. I., Feldman, W. C., Arnold, J. R., Englert, P. A. J., Metzger, A. E., Reedy, R. C., Squyres, S. W., Wanke, H., Bailey, S. H., Bruckner, J., Callas, J. L., Drake, D. M., Duke, P., Evans, L. G., Haines, E. L., McCloskey, F. C., Mills H., Shinohara, C. and Starr, R.: 1992, 'Science Application of the Mars Observer Gamma Ray Spectrometer', JGR 97, 7681–7698.ADSGoogle Scholar
  7. Boynton, W. V., Evans, L. G., Starr, R., Brückner, J., Bailey, S. H. and Trombka, J. I.: 1998, 'Induced Backgrounds in the Mars Observer Gamma-Ray Spectrometer', in Conference on the High Energy Radiation Background in Space, IEEE Nuclear and Plasma Sciences Society, The Institute of Electrical and Electronic Engineers, Inc., Workshop Record 97TH8346, pp. 30–33.Google Scholar
  8. Boynton, W. V., Feldman, W. C., Squyres, S. W., Prettyman, T. H., Bruckner, J., Evans, L. G., Reedy, R. C., Starr, R., Arnold, J. R., Drake, D. M., Englert, P. A. J., Metzger, A. E., Mitrofanov, Igor, Trombka, J. I., d'Uston, C., Wanke, H., Gasnault, O., Hamara, D. K., Janes, D. M., Marcialis, R. L., Maurice, S., Mikheeva, I., Taylor, G. J., Tokar, R. and Shinohara, C.: 2002, 'Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits', Science 297, 81–85.CrossRefADSGoogle Scholar
  9. Brückner, J., Koerfer, M., Wänke H., Schroeder, A. N. F., Filges D., Dragovitsch P., Englert P. A. J., Starr R., Trombka J., Taylor I., Drake D. and Shunk, E.: 1990, Radiation damage in germanium detectors: Implications for the gamma-ray spectrometer of the Mars Observer spacecraft. In: Lunar and Planetary Science XXI (Lunar and Planetary Institute, Houston), 137–138.Google Scholar
  10. Brückner, J., Koerfer, M., Wänke, H., Schroeder, A. N. F., Filges, D., Dragovitsch, P., Englert, P. A. J., Starr, R., Trombka, J. I., Taylor, I., Drake, D. M. and Shunk, E. R.: 1991, 'Proton-Induced Radiation Damage in Germanium Detectors', IEEE Transactions on Nuclear Science NS-38, 209–217.CrossRefADSGoogle Scholar
  11. Brückner, J., Fabian, U., Patnaik, A., Wänke, H., Cloth, P., Dagge, G., Drüke, V., Filges, D., Englert, P. A. J., Drake, D. M., Reedy, R. C. and Parlier, B.: 1992, 'Simulation Experiments for Planetary Gamma-Ray Spectroscopy by Means of Thick Target High-Energy Proton Irradiations,' in Lunar and Planetary Science XXIII (Lunar and Planetary Institute, Houston), pp. 169–170.Google Scholar
  12. Brückner, J., Wänke, H. and Reedy, R. C.: 1987, Neutron-Induced Gamma-Ray Spectroscopy: Simulations for Chemical Mapping of Planetary Surfaces. In Proceedings of the 17th Lunar and Planetary Science Conference, Part 2, J. Geophys. Res. 92, B4, E603–E616.Google Scholar
  13. Clark, B. C., Baird, A. K., Weldon, R. J., Tsusaki, D. M., Schnabel, L. and Candelaria, M. P.: 1982, 'Chemical Composition of Martian Fines', J. Geophys. Res. 87, 10,059–10,067.ADSGoogle Scholar
  14. Dagge, G., Dragovitsch, P., Filges, D. and Brückner, J.: 1991, 'Monte Carlo Simulation of Martian Gamma-Ray Spectra Induced by Galactic Cosmic Rays', Proc. Lunar Planet. Sci. Conf. 21, 425–435.ADSGoogle Scholar
  15. Drake, D. M., Feldman, W. C. and Jakosky, B. M.: 1988, 'Martian neutron leakage spectra', J. Geophys. Res. 93, 6353–6368.ADSGoogle Scholar
  16. Etchegaray-Ramirez, M. I., Metzger, A. E, Haines, E. L. and Hawke, B. R.: 1983, 'Thorium concentrations in the lunar surface: IV. Deconvolution of the Mare Imbrium, Aristarchus, and adjacent regions', J. Geophys. Res. 88, A529–A543.ADSGoogle Scholar
  17. Evans, L. G. and Squyres, S. W.: 1987, 'Investigation of Martian H2O and CO2 via orbital gammaray spectroscopy', J. Geophys. Res. 92, 9153–9167.ADSGoogle Scholar
  18. Evans, L. G., Trombka, J. I. and Boynton, W. V.: 1986, 'Elemental analysis of a comet nucleus by passive gamma-ray spectrometry from a penetrator', J. Geophys. Res. 91, B4, D525–D532.ADSGoogle Scholar
  19. Evans, L. G., Reedy, R. C. and Trombka, J. I.: 1993, Introduction to Planetary Remote Sensing Gamma Ray Spectroscopy, in Remote Geochemical Analyses: Elemental and Mineralogical Composition (C. M. Pieters and P. A. J. Englert, Eds.) (Cambridge Univ. Press, New York), pp. 167–198.Google Scholar
  20. Evans, L. G., Trombka, J. I., Starr, R., Boynton, W. V. and Bailey, S. H.: 1998, Continuum Background in Space-Borne Gamma-Ray Detectors, in Conference on the High Energy Radiation Background in Space, IEEE Nuclear and Plasma Sciences Society, The Institute of Electrical and Electronic Engineers, Inc., Workshop Record 97TH8346, pp. 101–103.Google Scholar
  21. Evans, L. D., Starr, R. D., Brückner, J., Reedy, R. C., Boynton, W. V., Trombka, J. I., Goldstein, J. O., Masarik, J., Nittler, L R. and McCoy, T. J.: 2001, 'Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros', Meteortitics Planetary Sci. 36, 1639–1660.ADSCrossRefGoogle Scholar
  22. Feldman, W. C. and Drake, D. M.: 1986, 'A Doppler filter technique to measure the hydrogen content off planetary surfaces', Nucl. Instrum. Methods Phys. Res. A245, 182–190.ADSGoogle Scholar
  23. Feldman, W. C., Drake, D. M., O'Dell, R. D., Bringley, F. W., Jr. and Anderson, R. C.: 1989, 'Gravitational effects on planetary neutron flux spectra', J. Geophys. Res. 94, 513–525.ADSGoogle Scholar
  24. Feldman, W. C. and Jakosky, B. M.: 1991, 'Detectability of martian carbonates from orbit using thermal neutrons', J. Geophys. Res. 96, 15,589–15,598.ADSGoogle Scholar
  25. Feldman, W. C., Boynton, W. V., Jakosky, B. M. and Mellon, M. T.: 1993, 'Redistribution of subsurface neutrons caused by ground ice on Mars', J. Geophys. Res. 98, #E11, 20855–20870.ADSGoogle Scholar
  26. Feldman, W. C., Boynton, W. V. and Drake, D. M.: 1993b, Planetary neutron spectroscopy from orbit, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters, P. A. J. Englert, eds., pp. 213–234, Cambridge Univ. Press, New York.Google Scholar
  27. Feldman, W. C., Barraclough, B. L., Fuller, K. R., Lawrence, D. J., Maurice, S., Miller, M. C., Prettyman, T. H. and Binder, A. B.: 1999, 'The Lunar Prospector Gamma-Ray and Neutron Spectrometers', Nucl. Instr. Methods Phys. Res. A 422, 562–566.CrossRefADSGoogle Scholar
  28. Feldman, W. C., Lawrence, D. J., Elphic, R. C., Vaniman, D. T., Thomsen, D. R., Barraclough, B. L., Maurice S. and Binder, A. B.: 2000, 'Chemical information content of lunar thermal and epithermal neutrons', J. Geophys. Res. 105, 20347–20363.CrossRefADSGoogle Scholar
  29. Feldman, W. C., Maurice, S., Lawrence, D. J., Little, R. C., Lawson, S. L., Gasnault, O., Wiens, R. C., Barraclough, B. L., Elphic, R. C., Prettyman, T. H., Steinberg, J. T and Binder, A. B.: 2001, 'Evidence forWater Ice Near the Lunar Poles', J. Geophys. Res. Planets 106, #E10, 23231–23252.CrossRefADSGoogle Scholar
  30. Feldman, W. C., Boynton, W. V., Tokar, R. L., Prettyman, T. H., Gasnault, O., Squyres, S. W., Elphic, R. C., Lawrence, D. J., Lawson, S. L., Maurice, S., McKinney, G. W., Moore, K. R. and Reedy, R. C.: 2002a, 'Global Distribution of Neutrons from Mars: Results from Mars Odyssey', Science 297, 75–78.CrossRefADSGoogle Scholar
  31. Feldman, W. C., Prettyman, T. H., Tokar, R. L., Boynton, W. V., Byrd, R. C., Fuller, K. R., Gasnault, O., Longmire, J. L., Olsher, R. H., Storms, S. A. and Thornton, G. W.: 2002b, 'Fast neutron flux spectrum aboard Mars Odyssey during cruise', J. Geophys. Res. 107, 10.1029/2001JA000295.Google Scholar
  32. Fermi, E.: 1950, Nuclear Physics, Univ. Chicago Press, p. 248.Google Scholar
  33. Gasnault, O., Feldman, W. C., Maurice, S., Genetay, I., d'Uston, C., Prettyman, T. H. and Moore, K. R.: 2001, 'Composition from Fast Neutrons: Application to the Moon', Geophys. Res. Lett. 28, 3797–3800CrossRefADSGoogle Scholar
  34. Jakosky, B. M. and Haberle, R. M.: 1990, 'Year-to-year instability of the Mars south polar cap', J. Geophys. Res. 95, 1359–1365.ADSGoogle Scholar
  35. Kieffer, H. H.: 1979, 'Mars south polar spring and summer temperatures: A residual CO2 frost', J. Geophys. Res. 84, 8263–8288.ADSGoogle Scholar
  36. Kieffer, H. H., Titus, T. N., Mullins, K. F. and Christensen, P. R.: 2000, 'Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size', J. Geophys. Res. 105, 9653–9699.CrossRefADSGoogle Scholar
  37. Lapides, J. R.: 1981, Planetary gamma-ray spectroscopy: The effects of hydrogen and the macroscopic thermal-neutron absorption cross section on the gamma-ray spectrum. Thesis, University of Maryland, College Park, 115 pp.Google Scholar
  38. Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Elphic, R. C., Maurice, S., Binder, A. B., Miller, M. C. and Prettyman, T. H;: 1999, 'High Resolution Measurements of Absolute Thorium Abundances on the Lunar Surface', Geophys. Res. Lett. 26, No. 17, 2681–2684.CrossRefADSGoogle Scholar
  39. Lawrence, D. J., Feldman, W. C., Elphic, R. C., Little, R. C., Prettyman, T. H., Maurice, S., Lucey, P. G. and Binder, A. B.: 2002, 'Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers', J. Geophys. Res. Planets, in press.Google Scholar
  40. Lingenfelter, R. E., Canfield, E. H. and Hampel, V. E.: 1972, 'The lunar neutron flux revisited', Earth Planet. Sci. Lett. 16, 355–369.CrossRefADSGoogle Scholar
  41. Lingenfelter, R. E., Canfield, E. H. and Hess, W. N.: 1961, 'The lunar neutron flux', J. Geophys. Res. 66, 2665–2671.ADSGoogle Scholar
  42. Mahoney, W. A., Ling, J. C., Jacobson, A. S. and Tapphorn, R. M.: 1980, 'The HEAO 3 gamma-ray spectrometer', Nucl. Instrum. Methods 178, 363–381.CrossRefADSGoogle Scholar
  43. Malin, M. C. and Edgett, K. E.: 2000, 'Evidence for recent groundwater seepage and surface runoff on Mars', Science 288, 2330–2335.CrossRefADSGoogle Scholar
  44. Masarik, J. and Reedy, R. C.: 1994, 'Effects of Bulk Composition on Nuclide Production Processes in Meteorites', Geochim. Cosmochim. Acta 58, 5307–5317.CrossRefADSGoogle Scholar
  45. Masarik, J. and Reedy, R. C.: 1996, 'Gamma Ray Production and Transport in Mars', J. Geophys. Res. 101, 18,891–18,912.CrossRefADSGoogle Scholar
  46. Mazets, E. P., Golenetskii, S. V. and Il'Inski, V. N.: 1977, P.s'ma V Astron. Zh (USSR), Vol. 2, No. 12, 563.ADSGoogle Scholar
  47. McSween, H. Y., Murchie, S. L., Crisp, J. A., Bridges, N. T., Anderson, R. C., Bell, J. F. III, Britt, D. T., Brückner, J., Dreibus, G., Economou, T., Ghosh, A., Golombek, M. P., Greenwood, J. P., Johnson, J. R., Moore, H. J., Morris, R. V., Parker, T. J., Rieder, R., Singer, R. and Wänke, H.: 1999, 'Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site', J. Geophys. Res. 104, 8679–8715.CrossRefADSGoogle Scholar
  48. McSween, H. Y. and Keil, K.: 2000, 'Mixing relationships in the Martian regolith and the composition of globally homogeneous dust', Geochim. Cosmochim. Acta 64, 2155–2166.CrossRefADSGoogle Scholar
  49. Metzger, A. E.: 1984, 'Climatology capabilities of a gamma-ray spectrometer at Mars', Bull. Am. Astron. Soc. 16, 678–679.ADSGoogle Scholar
  50. Metzger, A. E., Anderson E. C., Van Dilla M. A. and Arnold, J. R.: 1964, 'Detection of an interstellar flux of gamma-rays', Nature 204, 766–767.CrossRefADSGoogle Scholar
  51. Metzger, A. E. and Arnold, J.R.: 1970, 'Gamma-ray spectroscopic measurements of Mars', Appl. Opt. 9, 1289–1303.ADSCrossRefGoogle Scholar
  52. Metzger, A. E., Arnold, J. R., Reedy, R. C., Trombka, J. I. and Haines, E. L.: 1986a, The application of gamma-ray spectroscopy to the climatology of Mars. In: Lunar and Planetary Science XVII (Lunar and Planetary Institute, Houston), 549–550.Google Scholar
  53. Metzger, A. E. and Drake, D. M.: 1990, 'Identification of lunar rock types and search for polar ice gamma ray spectroscopy', J. Geophys. Res. 95, 449–460.ADSGoogle Scholar
  54. Metzger, A. E. and Haines, E. L.: 1990, 'Atmospheric measurements at Mars via gamma ray spectroscopy', J. Geophys. Res. 95, 14,695–14,715.ADSGoogle Scholar
  55. Metzger, A. E., Parker, R. H., Arnold, J. R., Reedy, R. C. and Trombka, J. I.: 1975, 'Preliminary design and performance of an advanced gamma-ray spectrometer for future orbiter missions', Proc. Lunar Sci. Conf. 6th, 2769–2784.Google Scholar
  56. Metzger, A. E., Parker, R. H. and Yellin, J.: 1986b, 'High energy irradiations simulating cosmic-rayinduced planetary gamma ray production. I. Fe target', J. Geophys. Res. 91, D495–D504.ADSGoogle Scholar
  57. Mitrofanov, I., Anfimov, D., Kozyrev, A., Litvak, M., Sanin, A., Tret'yakov, V., Krylov, A., Shvetsov, V., Boynton, W., Shinohara, C., Hamara, D. and Saunders, R. S.: 2002, 'Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey', Science 297, 78–81.CrossRefADSGoogle Scholar
  58. Pehl, R. H., Varnell, L. S. and Metzger, A. E.: 1978, 'High-energy proton radiation damage of high purity germanium detectors', IEEE Trans. Nucl. Sci. NS-25, 409–417.ADSCrossRefGoogle Scholar
  59. Prettyman, T. H., Feldman, W. C., Lawrence, D. J., McKinney, G. W., Binder, A. B., Elphic, R. C., Gasnault, O. M., Maurice, S. and Moore, K. R.: 2002, 'Library least squares analysis of Lunar Prospector Gamma-ray spectra', 33rd Lunar and Planetary Science Conference, Abstract #2012.Google Scholar
  60. Reedy, R. C.: 1978, 'Planetary gamma-ray spectroscopy', Proc. Lunar Planet. Sci. Conf. 9th, 2961–2984.Google Scholar
  61. Reedy, R. C.: 1988, Gamma-ray and neutron spectroscopy of planetary surfaces and atmospheres. In: Nuclear Spectroscopy of Astrophysical Sources (N. Gehrels and G. Share, eds.), AIP Conf. Proc. 170 (American Institute of Physics, New York), 203–210.Google Scholar
  62. Reedy, R. C. and Arnold, J. R.: 1972, 'Interaction of solar and galactic cosmic-ray particles with the Moon', J. Geophys. Res. 77, 537–555.ADSGoogle Scholar
  63. Reedy, R. C., Arnold, J. R. and Trombka, J. I.: 1973, 'Expected gamma ray emission from the lunar surface as a function of chemical composition', J. Geophys. Res. 78, 5847–5866.ADSGoogle Scholar
  64. Rieder, R., Economou, T. Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G. and McSween, H. Y. Jr.: 1997, 'The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode', Science 278, 1771–1774.CrossRefADSGoogle Scholar
  65. Saunders, R. S., Arvidson, R. E., Badhwar, G. D., Boynton, W. V., Christensen, P., Cucinotta, F. A., Gibbs, R. G., Kloss, Jr. C., Landano, M. R., Mase, R. A., Meyer, M., Pace, G., Plaut, J. J., Sidney, W., McSmith, G. W., Spencer, D. A., Thompson, T. W. and Zeitlin, C. J.: 2004, '2001 Mars Odyssey Mission Summary', Space Sci. Rev., 110, 1–36.CrossRefADSGoogle Scholar
  66. Smith, D. E., Zuber, M. T., and Neumann, G. A.: 2001, 'Seasonal variations of snow depth on Mars', Science 294, 2141–2146.CrossRefADSGoogle Scholar
  67. Surkov, Y. A.: 1984, 'Nuclear-physical methods of analysis in lunar and planetary investigations', Isotopenpraxis 20, 321–329.Google Scholar
  68. Surkov, Y. A., Barsukov, V. L., Moskaleva, L. P., Kharyukova, V. P., Zaitseva, S. Y., Smirnov, G. G. and Manvelyan, O. S.: 1989, 'Determination of the elemental composition of martian rocks from Phobos 2', Nature 341, 595–598.CrossRefADSGoogle Scholar
  69. Thakur, A. N.: 1997, 'Analysis Of Gamma-Ray Continuum Spectra to Determine the Chemical Composition', J. Radioanal. Nucl. Chem. 215, 161–167.CrossRefGoogle Scholar
  70. Trombka, J. I., Dyer, C. S., Evans, L. G., Bielefeld, M. J., Seltzer, S. M. and Metzger, A. E.: 1977, 'Reanalysis of the Apollo Cosmic Gamma-Ray Spectrum in the 0.3 to 10 MeV Energy Region', Astrophys. J. 212, 925–935.CrossRefADSGoogle Scholar
  71. Trombka, J. I., Evans, L. G., Starr, R., Floyd, S. R., Squyres, S. W., Whelan, J. T., Barnford, G. J., Coldwell, R. L., Rester, A. C., Surkov, Y. A., Moskaleva, L. P., Kharyukova, V. P., Manvelyan, O. S., Zaitseva, S. Y. and Smirnov, G. G.: 1992, 'Analysis of Phobos Mission Gamma-Ray Spectra from Mars', Proc. Lunar Planet. Sci. Conf. 22, 22–39.ADSGoogle Scholar
  72. Trombka, J. I., Squyres, S.W., Brückner, J., Boynton, W. V., Reedy, R. C., McCoy, T. J., Gorenstein, P., Evans, L. G., Arnold, J. R., Starr, R. D., Nittler, L. R., Murphy, M. E., Mikheeva, I., McNutt Jr., R. L., McClanahan, T. P., McCartney, E. Goldsten, J. O., Gold, R. E., Floyd, S. R., Clark, P. E., Burbine, T. H., Bhangoo, J. S., Bailey, S. H. and Petaev, M.: 2000, 'The Elemental Composition of Asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray Spectrometer', Science 289, 2101–2105.CrossRefADSGoogle Scholar
  73. Van Dilla, M. A., Anderson, E. C., Metzger, A. E. and Schuch, R. L.: 1962, 'Lunar composition by scintillation spectroscopy', IRE Trans. Nucl. Sci. NS-9, 405–412.ADSCrossRefGoogle Scholar
  74. Wänke, H. and Dreibus, G.: 1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A 325, 545–557.ADSGoogle Scholar
  75. Wänke H., Brückner J., Dreibus G., Rieder R. and Ryabchikov I.: 2001, Chemical composition of rocks and soils at the Pathfinder site, Space Science Reviews, 96, 317–330.CrossRefADSGoogle Scholar
  76. Yadav, J. S., Brückner, J. and Arnold, J. R.: 1989, 'Weak Peak Problem in High Resolution Gamma-Ray Spectroscopy', Nucl. Instrum. Methods Phys. Res. A277, 591–598.ADSGoogle Scholar
  77. Zent, A. P., Fanale, F. P., Salvail, J. R. and Postawko, S. E.: 1986, 'Distribution and state of H2O in the high-latitude shallow subsurface of Mars', Icarus 67, 19–36.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • W.V. Boynton
    • 1
  • W.C. Feldman
    • 2
  • I.G. Mitrofanov
    • 3
  • L.G. Evans
    • 4
  • R.C. Reedy
    • 5
  • S.W. Squyres
    • 6
  • R. Starr
    • 7
  • J.I. Trombka
    • 8
  • C. d'Uston
    • 9
  • J.R. Arnold
    • 10
  • P.A.J. Englert
    • 11
  • A.E. Metzger
    • 12
  • H. Wänke
    • 13
  • J. Brückner
    • 13
  • D.M. Drake
    • 14
  • C. Shinohara
    • 1
  • C. Fellows
    • 1
  • D.K. Hamara
    • 1
  • K. Harshman
    • 1
  • K. Kerry
    • 1
  • C. Turner
    • 1
  • M. Ward
    • 1
  • H. Barthe
    • 9
  • K.R. Fuller
    • 2
  • S.A. Storms
    • 2
  • G.W. Thornton
    • 2
  • J.L. Longmire
    • 2
  • M.L. Litvak
    • 3
  • A.K. Ton'chev
    • 3
  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonU.S.A
  2. 2.Los Alamos National LaboratoryLos AlamosU.S.A
  3. 3.Space Research InstituteMoscow
  4. 4.Science Programs, Computer Sciences CorporationLanhamU.S.A
  5. 5.Institute of MeteoriticsUniversity of New MexicoAlbuquerqueU.S.A
  6. 6.Center for Radiophysics & Space ResearchCornell UniversityIthacaU.S.A
  7. 7.Department of PhysicsThe Catholic University of AmericaWashingtonU.S.A
  8. 8.NASA/Goddard Space Flight CenterGreenbeltU.S.A
  9. 9.Centre d'Etude Spatiale des RayonnementsToulouseFrance
  10. 10.Department of ChemistryUniversity of California San DiegoLa JollaU.S.A
  11. 11.University of HawaiiManoaU.S.A
  12. 12.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A
  13. 13.Max-Planck-Institut für ChemieMainzFederal Republic of Germany
  14. 14.TechSourceSante FeU.S.A

Personalised recommendations