Solar System Research

, Volume 38, Issue 2, pp 97–107 | Cite as

Is the Kaidun Meteorite a Sample from Phobos?

  • A. V. Ivanov


The Kaidun meteorite exhibits an incredible diversity of extraterrestrial material. The parent body of the meteorite is mainly composed of carbonaceous chondrite material of the second petrological type. The meteorite is specific in its composition: it contains numerous fragments and inclusions formed at an early stage of the Solar System evolution by nebular condensation, gaseous metasomatosis, agglomeration, and other processes, and two different fragments of alkaline-enriched differentiated material, which entered the parent body as a result of different events. The data on the lithologic composition of the Kaidun meteorite give strong arguments for considering the meteorite's parent body to be a carbonaceous chondrite satellite of a large differentiated planet. Phobos, the moon of Mars, is the most probable candidate. Many features of the Kaidun meteorite can be well explained within the framework of the popular hypothesis of Phobos' origin based on the nebular capture model.


Agglomeration Solar System System Evolution Strong Argument Parent Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avanesov, G., Zhukov, B., Ziman, Ya., et al., Results of TV Imaging of Phobos (Experiment VSK-FREGAT), Planet. Space Sci., 1991, vol. 39, pp. 281-295.Google Scholar
  2. Bell, J.F., Fanale, F., and Cruikshank, D.P., Chemical and Physical Properties of the Martial Satellites, Resources of Near-Earth Space, Lewis, J., Matthews, M.S., Guerrieri, M.L., et al., Eds., Tucson: Univ. of Arizona Press, 1993, pp. 887-901.Google Scholar
  3. Bischoff, A., Geiger, T., Palme, H., et al., Mineralogy, Chemistry, and Noble Gas Contents of Adzhi-Bogdo-an LL3-6 Chondritic Breccia with L-Chondritic and Granitoidal Clasts, Meteoritics, 1993, vol. 28, pp. 570-578.Google Scholar
  4. Brandstätter, F., Kurat, G., and Ivanov, A.V., Isolated Minerals in Kaidun II (CI), Meteoritics, 1992, vol. 27, p. 206.Google Scholar
  5. Brearley, A.J. and Jones, R.H., Chondritic Meteorites, Planetary Materials, Papaike, J.J., Ed., Rev. Mineral., 1998, vol. 36, pp. 6-01-6-53.Google Scholar
  6. Britt, D.T. and Pieters, C.M., An Investigation of the Origin of Phobos on the Basis of Data on Its Composition, Astron. Vestn., 1988, vol. 22,no. 3, pp. 229-239.Google Scholar
  7. Bunch, T.E. and Chang, S., Carbonaceous Chondrites. II. Carbonaceous Chondrite Phyllosilicates and Light Element Geochemistry as Indicators of Parent Body Processes and Surface Conditions, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1543-1577.Google Scholar
  8. Burbine, T.H., McCoy, T.J., Meibom, A., et al., Meteoritic Parent Bodies: Their Number and Identification, Asteroids III, Bottke, W., Cellino, A., Paolicchi, P., et al., Eds., Tucson: Univ. of Arizona Press, 2002, pp. 653-667.Google Scholar
  9. Burns, J.A., The Dynamical Evolution and Origin of the Martian Moons, Vistas in Astronomy, 1978, no. 22, pp.193-210. Translated under the title Dynamicheskaya evolutsiya i proiskhozhdenie marsianskikh sputnikov, in Sputniki Marsa, Moscow: Mir, 1981, pp. 70–94.Google Scholar
  10. Burns, J.A., Contradictory Clues as to Origin of the Martian Moons, Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., et al., Eds., Tucson: Univ. of Arizona Press, 1992, pp. 1283-1301.Google Scholar
  11. Clayton, R.N. and Mayeda, T.K., Oxygen Isotopic Compositions of Separated Fractions of the Leoville and Renazzo Carbonaceous Chondrites, Meteoritics, 1977, vol. 12, p. 199.Google Scholar
  12. Cuzzi, J.N., Hogan, R.C., Paque, J.M., and Dobrovolskis, A.R., Size-Selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence, Astrophys. J., 2001, vol. 546, pp. 496-508.Google Scholar
  13. Dobrovolskis, A.R. and Burns, J.A., Life Near the Roche Limit, Icarus, 1980, vol. 42, pp. 422-441.Google Scholar
  14. Dubinin, E.M., Lundin, R., Pissarenko, N.F., et al., Indirect Evidence for a Gas/Dust Torus Along the Phobos Orbit, Geophys. Res. Lett., 1990, vol. 17, pp. 861-864.Google Scholar
  15. Duxbury, T.C. and Callahan, J.D., Phobos and Deimos Control Networks, Icarus, 1989, vol. 77, pp. 275-286.Google Scholar
  16. Fanale, F. and Salvail, J.R., Loss of Water From Phobos, Geophys. Res. Lett., 1989, vol. 16, pp. 287-290.Google Scholar
  17. Fanale, F. and Salvail, J.R., Evolution of the Water Regime of Phobos, Icarus, 1990, vol. 88, pp. 380-395.Google Scholar
  18. Florenskii, K.P., Basilevsky, A.T., Burba, G.A., et al., Ocherki sravnitel'noi planetologii (Studies on Comparative Planetology), Moscow: Nauka, 1981.Google Scholar
  19. Fredriksson, K. and Kerridge, J.F., Carbonates and Sulfates in CI Chondrites: Formation by Aqueous Activity on the Parent Body, Meteoritics, 1988, vol. 23, pp. 35-44.Google Scholar
  20. Grady, M.M., Catalogue of Meteorites. Fifth Edition, Cambridge Univ. Press, 2000.Google Scholar
  21. Grossman, J.N., Rubin, A.E., Nagahara, H., and King, E., Properties of Chondrules, Meteorites and the Early Solar System, Kerridge, J.F. and Mattherws, M.S., Eds., Tucson: Univ. of Arizona Press, 1988, pp. 619-659.Google Scholar
  22. Hunter, D.M., Capture of Phobos and Deimos by Protoatmospheric Drag, Icarus, 1979, vol. 37, pp. 113-123.Google Scholar
  23. Hutcheon, I.D., Weisberg, M.K., Phinney, D.L., et al., Radiogenic 53Cr in Kaidun Carbonates: Evidence for Very Early Aqueous Activity, Lunar and Planet. Sci. XXX, 1999, Abstract #1722.Google Scholar
  24. Ivanov, A.V., Ulyanov, A.A., Skripnik, A.Ya., et al., The Kaudin Carbonaceous Chondrite: Evidences of Intensive Mixing During Formation of Meteorite Parent Bodies, Tez. dokl. 27 Mezhdunar. geologicheskogo kongressa (Abstracts of Papers of the 27 Int. Geological Congress) Moscow, 1984, vol. V, p. 297.Google Scholar
  25. Ivanov, A.V., Ulyanov, A.A., Skripnik, A.Ya., et al., The Kaudin Carbonaceous Chondrite: A New Type of the Meteorite Breccia, Dokl. Akad. Nauk SSSR, 1985, vol. 280,no. 2, pp. 473-475.Google Scholar
  26. Ivanov, A.V., Skripnik, A.Ya., Ul'yanov, A.A., et al., Chemical Composition, Mineralogy, and Geochemical Properties of the New Kaidun Meteorite, Meteoritika, 1986, no. 45, pp. 3-19.Google Scholar
  27. Ivanov, A.V., The Kaidun Meteorite: Composition and History, Geokhimiya, 1989, no. 2, pp. 259-266 [Geochemistry International (Engl.Transl), vol. 26, no. 9, pp. 84–91].Google Scholar
  28. Ivanov, A.V., Crystals of Fe, Ni-Metal Formation in the Kaudin Meteorite: A Role of Carbonyl Compounds, Dokl. Akad. Nauk SSSR, 1989, vol. 308,no. 3, pp. 712-716.Google Scholar
  29. Ivanov, A.V., Kononkova, N.N., and Guseva, Ye..V., Hydrothermal Alteration of Schreibersite and Metallic Iron in Kaudin III Meteorite (EH5), Geokhimiya, 1992, no. 8, pp. 1085-1093 [Geochemistry International (Engl. Transl), 1993, vol. 30, no. 3, pp. 11–19].Google Scholar
  30. Ivanov, A.V., MacPherson, G.J., Zolensky, M.E., et al., The Kaidun Meteorite: Composition and Origin of Inclusions in the Metal of the Enstatite Chondrite Clast, Meteoritics Planet. Sci., 1996a, vol. 31, pp. 621-626.Google Scholar
  31. Ivanov, A.V., Brandstätter, F., Zolensky, M.E., and Kononkova, N.N., The Kaidun Meteorite: Melt Deposits on the Surface of Some Particles, Lunar Planet. Sci. XXVII, 1996b, vol. 27, pp. 585-586.Google Scholar
  32. Ivanov, A.V., Migdisova, L.F., Zolensky, M.E., et al., The Kaidun Meteorite: An enstatite chondrite fragment with unusual inclusion in the metal, Geokhimiya, 1997, no. 4, pp. 369-379 [Geochemistry International (Engl. Transl), vol. 35, no. 4, pp. 318–328].Google Scholar
  33. Ivanov, A.V., The Kaidun Meteorite: Space Trawl?, Meteorit. Planet. Sci. Suppl., 1997, vol. 32, pp. A65-A66.Google Scholar
  34. Ivanov, A.V., Kurat, G., Migdisova, L.F., et al., The Kaudin Meteorite: Pre-and postaccretionary aqueous alterations of metal in an enstatite chondrite fragment, Geokhimiya, 1998, no. 2, pp. 131-136 [Geochemistry International (Engl. Transl), vol. 36, no. 2, pp. 101–106].Google Scholar
  35. Ivanov, A.V., Zolensky, M.E., and Yang, S.V., The Kaidun Meteorite: Evidence for Aqueous Alteration and Precipitation, Meteorit. Meteorit. Planet. Sci. Suppl., 2000, vol. 35, p. A82.Google Scholar
  36. Ivanov, A.V., Zolensky, M.E., Kononkova, N.N., et al., The Kaidun Meteorite: a Melted Clast of Subalkaline Rock, Meteorit. Planet. Sci. Suppl., 2001, vol. 36, p. A87.Google Scholar
  37. Ivanov, A.V., Kononkova, N.N., Zolensky, M.E., et al., Kaidun Meteorite: An alkaline rock fragment, Geokhimiya, 2002, no. 7, pp. 769-772 [Geochemistry International (Engl. Transl.), vol. 40, no. 7, pp. 694–697].Google Scholar
  38. Ivanov, A.V., Kurat, G., Brandstaetter, F., et al., The Kaidun Meteorite: An enstatite aggregate with Sulfide-Oxide Inclusions, Geokhimiya, 2002, no. 12, pp. 1264-1270 [Geochemistry International (Engl. Transl.), vol. 40, no. 12, pp. 1139–1145].Google Scholar
  39. Kashkarov, L.L., Korotkova, N.N., Skripnik, A.Ya., and Ignatenko, K.I., Radiation-Thermal Hystory of the Anomalous Kaidun Meteorite based on Track Investigations of Silicate Minerals and Glasses, Geokhimiya, 1995, no. 10, pp. 1409-1422.Google Scholar
  40. Kerridge, J.F., Carbon, Hydrogen and Nitrogen in Carbonaceous Chondrites: Abundances and Isotopic Compositions in Bulk Samples, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1707-1714.Google Scholar
  41. Klöck, W., Thomas, K.L., McKay, D.S., and Palme, H., Unusual Olivine and Pyroxene Composition in Interplanetary Dust and Unequilibrated Ordinary Chondrites, Nature, 1989, vol. 339, pp. 126-128.Google Scholar
  42. Ksanfomality, L., Moroz, V., Merchi, S., et al., Physical Properties of the Phobos' Regolith, Kosm. Issled., 1991, vol. 29,no. 4, pp. 621-640.Google Scholar
  43. Kurat, G., Zinner, E., Brandstätter, F., and Ivanov, A., The Kaidun Meteorite: An Enstatite Clast with Niningerite and Heideite as Trace Element Carriers, Meteorit. Planet. Sci. Suppl., 1997, vol. 32, pp. A76-A77.Google Scholar
  44. Malysheva, T.V., Ivanov, A.V., Polosin, A.V., and Smirnova, E.V., Iron Distribution in Mineral Phases in the Kaidun Meteorite Samples, Meteoritika, 1986, no. 45, pp. 23-30.Google Scholar
  45. McPherson, G.J., Davis, A.M., and Ivanov, A., Refractory Inclusions in the Kaidun Carbonaceous Chondrite Breccia, Meteoritics, 1994, vol. 29, p. 494.Google Scholar
  46. McSween, H.Y., Jr. and Treiman, A.H., Martian Meteorites, Planetary Materials, Papaike, J.J, Ed., Rev. Mineral., 1998, vol. 36, pp. 6-01-6-53.Google Scholar
  47. McSween, H.Y., Jr., Murchie, S.L., Crisp, J.A., et al., Chemical, Multispectral, and Textural Constraints on the Composition and Origin of Rocks at the Mars Pathfinder Landing Site, J. Geophys. Res., Ser. E, 1999, vol. 104,no. 4, pp. 8679-8715.Google Scholar
  48. Meibom, A. and Clark, B.E., Evidence for the Insignificance of Ordinary Chondritic Material in the Asteroidal Belt, Meteorit. Planet. Sci., 1999, vol. 34, pp. 7-24.Google Scholar
  49. Meyer, C., Mars Meteorite Compendium, NASA JSC, Houston, Texas, 1998.Google Scholar
  50. Migdisova, L.F., Ivanov, A.V., Kononkova, N.N., et al., The Kaidun Meteorite: a Fragment of a High-Calcium Primitive Achondrite, Geochem. Int. Suppl., 2000, vol. 38,Suppl. 3, pp. S369-S374.Google Scholar
  51. Murray, J.B., Rothery, D.A., Thornhill, G.D., et al., The Origin of Phobos' Grooves and Crater Chains, Planet. Space Sci., 1994, vol. 42, pp. 519-526.Google Scholar
  52. Richardson, S.M., Vein Formation in the C1 Carbonaceous Chondrites, Meteoritics, 1978, vol. 13, pp. 141-159.Google Scholar
  53. Rieder, R., Economou, T., Wanke, H., et al., The Chemical Composition of Martial Soil and Rocks Returned by the Mobile Alpha Proton X-Ray Spectrometer: Preliminary Results From the X-Ray Mode, Science, 1997, vol. 278, pp. 1771-1774.Google Scholar
  54. Scott, E.R.D., What Chondrites Can Tell as About Accretion in the Solar Nebula, Lunar Planet. Sci. Conf. XXXIII, 2002, Abstract #1453.Google Scholar
  55. Shingareva, T.V. and Kuz'min, R.O., Mass-Wasting Processes on the Surface of Phobos, Astron. Vestn., 2001, vol. 35,no. 6, pp. 479-492 [Sol. Syst. Res. (Engl. Transl.), 2001, vol. 35, no. 6, p. 431].Google Scholar
  56. Shukolyukov, Yu.A., Dang Vu Min', and Ivanov, A.V., Isotopic Heterogeneity of the Noble Gases in the Kaidun Carbonaceous Chondrite, Meteoritika, 1986, no. 45, pp. 31-37.Google Scholar
  57. Simonelli, D.P., Wisz, M., Switala, A., et al., Photometric Properties of Phobos Surface Materials From Viking Images, Icarus, 1998, vol. 131, pp. 52-77.Google Scholar
  58. Thomas, P., Veverka, J., Bell, J., et al., Satellites of Mars: Geologic History, Mars, Kieffer, H.H., Jakosky, B.M., Snyder, C.W., et al., Eds., Tucson: Univ. of Arizona Press, 1992, pp. 1257-1282.Google Scholar
  59. Tomeoka, K., Phyllosilicate Veins in the Yamato-82162 CI Carbonaceous Chondrite: Evidence for Post-Accretionary Aqueous Alteration, Meteoritics, 1990, vol. 25, p. 415.Google Scholar
  60. Ulyanov, A.A., Ivanov, A.V., Brandstaetter, F., et al., Spinel-Rich Metasomatized CAI From Kaidun, Meteoritics, 1994, vol. 29, pp. 542-543.Google Scholar
  61. Veverka, J., Phobos and Deimos, Scientific American, 1977, vol. 236,no. 2, pp. 30-37. Translated under the title Poverkhnosti Fobosa i Deimosa, in Sputniki Marsa, Moscow: Mir, 1981, pp. 52–69.Google Scholar
  62. Weisberg, M.K., Prinz, M., Clayton, R.N., and Mayeda, T.K., The CR (Renazzo-Type) Carbonaceous Chondrite Group and Its Implications, Geochim. Cosmochim. Acta, 1993, vol. 57,no. 7, pp. 1567-1586.Google Scholar
  63. Weisberg, M.K., Prinz, M., Zolensky, M.E., and Ivanov, A.V., Carbonates in the Kaidun Meteorite, Meteoritics, 1994, vol. 29,no. 4, pp. 549-550.Google Scholar
  64. Zolensky, M.E. and McSween, H.J., Jr., Aqueous Alteration, Meteorites and Early Solar System, Kerridge, J.F. and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1988, pp. 114-143.Google Scholar
  65. Zolensky, M.E., Bourcier, W.L., and Gooding, J.L., Aqueous Alteration of the Hydrous Asteroids: Results of EQ3/6 Computer Simulations, Icarus, 1989, vol. 78, pp. 411-425.Google Scholar
  66. Zolensky, M.E., Ivanov, A.V., Yang, S.V., et al., The Kaidun Meteorite: Mineralogy of An Unusual CM1 Lithology, Meteorit. Planet. Sci., 1996, vol. 31, pp. 484-493.Google Scholar
  67. Zolensky, M. and Ivanov, A., Kaidun: a Smorgasbord of New Asteroid Samples, Meteorit. Planet. Sci. Suppl., 2001, vol. 36, p. A233.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Ivanov

There are no affiliations available

Personalised recommendations