Advertisement

Solar System Research

, Volume 38, Issue 1, pp 28–38 | Cite as

Stochastic Models of Hot Planetary and Satellite Coronas

  • V. I. Shematovich
Article

Abstract

The hot planetary and satellite coronas are populated by the suprathermal particles produced in the transition region between the collision-dominated and free-molecule atmospheric layers under the external effects of electromagnetic and corpuscular solar radiation and magnetospheric plasma. We construct a numerical stochastic model to investigate both the local formation and kinetics of suprathermal particles and their transport to exospheric heights from underlying atmospheric layers. In contrast to other commonly used approaches, the suggested numerical model is suitable for studying the flows of atmospheric gas weakly and strongly perturbed by suprathermal particles, i.e., for studying the formation of hot planetary and satellite coronas proper. Highly efficient Monte-Carlo algorithms with weighted particles underlie the numerical implementation of the model. This numerical model is used to investigate the following: (i) the hot oxygen corona of Europa, a Jovian satellite, which is an example of a highly nonequilibrium near-surface atmosphere; and (ii) the nonthermal losses of nitrogen from Titan, a Saturnian satellite, when suprathermal atoms and molecules of nitrogen are only a small admixture to the surrounding thermal molecular nitrogen—the main atmospheric component of Titan.

Keywords

Stochastic Model Molecular Nitrogen Atmospheric Layer Weighted Particle Magnetospheric Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Van Kampen, A.G.,Stochastic Processes in Physics and Chemistry, Amsterdam: North Hollaud, 1984., Translated under the titleStokhasticheskie protsessy v fizike I khimii, Moscow: Vysshaya Shkola, 1990.Google Scholar
  2. Balakrishnan, N., Sergueeva, E., Kharchenko, V., and Dalgarno, A., Kinetics and Thermalization of Hot N(4S) Atoms in the Upper Atmosphere,J. Geophys. Res., 2000, vol. 105, pp. 18549-18556.Google Scholar
  3. Bird, G.A.,Molecular Gas Dynamics, Oxford: Clarendon Press, 1976. Translated under the titleMolekulyarnaya gazovaya dinamika, Mir, Moscow, 1981.Google Scholar
  4. Boyarchuk, K.A., Karelin, A.V., and Shematovich, V.I., On a Possible Mechanism for the Formation of Oxygen Atmospheres on Jupiter's Icy Satellites.,Astron. Vestn., 2000, vol. 34,no. 1, pp. 12-19 [Sol. Syst. Res.(Engl. Transl.), vol. 34, pp. 12-19].Google Scholar
  5. Chamberlain, J.W. and Hunten, D.,Theory of Planetary Atmospheres. An Introduction to Their Physics and Chemistry, New York: Academic, 1987.Google Scholar
  6. Combi, M.R., Time-Dependent Gas Kinetics in Tenuous Planetary Atmospheres: the Cometary Coma,Icarus, 1996, vol. 123, pp. 206-227.Google Scholar
  7. Cotton, D.M., Gladstone, G.R., and Chakrabarti, S., Sounding Rocket Observation of a Hot Atomic Oxygen Geocorona,J. Geophys. Res., 1993, vol. 98, pp. 21651-21657.Google Scholar
  8. Ferziger, J. and Kaper, H.,Mathematical Theory of Transport Processes in Gases, Amsterdam: North-Holland, 1972.Google Scholar
  9. Fox, J.L. and Bakalian, F.M., Photochemical Escape of Atomic Carbon From Mars,J. Geophys. Res., 2001, vol. 106, pp. 28785-28796.Google Scholar
  10. Fox, J.L. and Hac, A., Spectrum of Hot O at the Exobases of the Terrestrial Planets,J. Geophys. Res., 1997, vol. 102, pp. 24004-24012.Google Scholar
  11. Gérard, J.-C., Bisikalo, D.V., Shematovich, V.I., and Duff, J.W., An Updated Model of the Hot Nitrogen Atom Kinetics and Thermospheric Nitric Oxide,J. Geophys. Res., 1997, vol. 102, pp. 285-294.Google Scholar
  12. Hedin, A.E., Hot Oxygen Geocorona as Inferred From Neutral Exospheric Models and Mass Spectrometer Measurements,J. Geophys. Res., 1989, vol. 94, pp. 5523-5529.Google Scholar
  13. Hubert, B., Gérard, J.-C., Killeen, T.,et al., Observation of Anomalous Temperatures in the Daytime O(1D) 6300 A Thermospheric Emission: a Possible Signiture of Nonthermal Atoms,J. Geophys. Res., 2001, vol. 106, pp. 12753-12764.Google Scholar
  14. Hubert, B., Gérard, J.-C., Cotton, D.M.,et al., Effect of Hot Oxygen on Thermospheric O I UV Airglow,J. Geophys. Res., 1999, vol. 104, pp. 17139-17144.Google Scholar
  15. Hunten, D.M., Exospheres and Planetary Escape,Atmospheres in the Solar System, Mendillo, M., Nagy, A., and Waite, J.H., Eds., Washington: AGU, Geophysical Monograph 130, 2002. pp. 191-202.Google Scholar
  16. Ip, W.-H., On a Hot Oxygen Corona of Mars,Icarus, 1988, vol. 76, pp. 135-145.Google Scholar
  17. Ivanov, M.S. and Rogazinskij, S.V., Analysis of Numerical Techniques of the Direct Simulation Monte-Carlo Method in the Rarefied Gas Dynamics,Sov. J. Numer. Anal. Math. Modell., 1988, vol. 3, pp. 453-460.Google Scholar
  18. Johnson, R.E.,Energetic Charged Particle Interactions with Atmospheres and Surfaces, Berlin: Springer, 1990.Google Scholar
  19. Johnson, R.E., Surface Boundary Layer Atmospheres,Atmospheres in the Solar System, Mendillo, M., Nagy, A., and Waite, J.H., Eds., Washington: AGU, Geophysical Monograph 130, 2002, pp. 203-219.Google Scholar
  20. Kabin, K. and Shizgal, B.D., Velocity Distributions of Energetic Atoms in Planetary Exospheres From Dissociative Recombination,J. Geophys. Res., 2002, vol. 107, pp. 1-7.Google Scholar
  21. Kac, M., Some Probabilistic Aspects of the Boltzmann Equation,The Boltzmann Equation Theory and Application, New York: Springer, 1973, pp. 379-382.Google Scholar
  22. Lammer, H. and Bauer, S.J., Nonthermal Atmospheric Escape From Mars and Titan,Planet. Space Sci., 1991, vol. 41, pp. 1819-1825.Google Scholar
  23. Leontovich, M.A., Basic Equations of the Kinetic Theory of Gases from the Viewpoint of Stochastic Processes,Zh. Eksp. Teor. Fiz., 1935, vol. 5, pp. 211-245.Google Scholar
  24. Lie-Svendsen, O., Rees, M.H., Stamnes, K., and Whipple, E.C., The Kinetics of “Hot” Nitrogen Atoms in Upper Atmosphere Neutral Chemistry,Planet. Space Sci., 1991, vol. 39, pp. 929-943.Google Scholar
  25. Light, J.C., Ross, J., and Shuler, K.E., Rate Coefficients, Reaction Cross Sections and Microscopic Reversibility,Kinetic Processes in Gases and Plasmas, Hochstim, A.R., Ed., New York: Academic, 1969, pp. 281-302.Google Scholar
  26. Logan, J.A. and McElroy, M.B., Distribution Functions for Energetic Oxygen Atoms in the Earth's Lower Atmosphere,Planet. Space Sci., 1979, vol. 25, pp. 117-126.Google Scholar
  27. Marconi, M.L., Dagum, L., and Smyth, W.H., Hybrid Fluid/kinetic Approach to Planetary Atmospheres: An Example of An Intermediate-Mass Body,Astrophys. J., 1996, vol. 469, pp. 393-402.Google Scholar
  28. Marov, M.Ya., Shematovich, V.I., Bisikalo, D.V., and Gérard, J.-C.,Nonequilibrium Processes in the Planetary and Cometary Atmospheres: Theory and Applications, Dordrecht: Kluwer Academic, 1997.Google Scholar
  29. Marov, M.Ya., Shematovich, V.I., and Bisikalo, D.V.,Kineticheskoe modelirovanie razrezhennogo gaza v zadachakh aeronomii(TRaNSl), Moscow: Inst. Prikl. Mat. Keldysha, 1990.Google Scholar
  30. Marov, M.Ya., Shematovich, V.I., and Bisikalo, D.V., Non-Equilibrium Aeronomic Processes. A Kinetic Approach to the Mathematical Models,Space Sci., 1996, vol. 76,no. 1–2, pp. 1-200.Google Scholar
  31. Mauk, B.H., Mitchell, D.G., Krimigis, S.M.,et al., Energetic Neutral Atoms From a Trans-Europa Gas Torus at Jupiter,Nature(London), 2003, vol. 421, pp. 920-922.Google Scholar
  32. Nagy, A.F. and Cravens, T.E., Hot Oxygen Atoms in the Upper Atmospheres of Venus and Mars,Geophys. Res. Lett., 1988, vol. 15, pp. 433-435.Google Scholar
  33. Nagy, A.F., Kim, J., Cravens, T.E., and Kliore, A.J., Hot Oxygen Corona at Europa,Geophys. Res. Lett., 1998, vol. 25, pp. 4153-4156.Google Scholar
  34. Nagy, A.F., Kim, J., and Cravens, T.E., Hot Hydrogen and Oxygen Atoms in the Upper Atmospheres of Venus and Mars,Ann. Geophys., 1990, vol. 8, pp. 251-256.Google Scholar
  35. Oliver, W.L. and Schoendorf, J., Variations of Hot O in the Thermosphere,Geophys. Res. Lett., 1999, vol. 26, pp. 2829-2832.Google Scholar
  36. Prigogine, I.,Nonequilibrium Statistical Mechanics, New York: Intersci., 1962. Translated under the titleNeravnovesnaya statisticheskaya mekhanika, Moscow: Mir, 1964.Google Scholar
  37. Pyarnpuu, A.A., Cheredov, V.V., and Shematovich, V.I., Kinetic Simulation of “Hot” Hydrogen Molecules Ejected from the Surfaces of Interstellar Dust Particles,Mat. Model., 2001, vol. 13, pp. 88-93.Google Scholar
  38. Pyarnpuu, A.A., Rymarchuk, A.V., and Shematovich, V.I., Nonequilibrium Chemical Kinetics in Spacecraft Ejections Near Its Surface,Mat. Model., 1999, vol. 11, pp. 33-44.Google Scholar
  39. Pyarnpuu, A.A., Shematovich, V.I., and Zmievskaya, G.I., Construction of a Physical-Probabilistic Analogue for Collisional Processes in Rarefied Gas,Dokl. Akad. Nauk SSSR, 1981, vol. 259, pp. 815-818.Google Scholar
  40. Rjasanow, S. and Wagner, W., A Stochastic Weighted Particle Method for Boltzmann Equation,J. Comput. Phys., 1996, vol. 124, pp. 243-253.Google Scholar
  41. Rjasanow, S., Schreiber, T., and Wagner, W., Reduction of the Number of Particles in the Stochastic Weighted Particle Method for Boltzmann Equation,J. Comput. Phys., 1998, vol. 145, pp. 382-405.Google Scholar
  42. Shematovich, V.I. and Johnson, R.E., Near-Surface Oxygen Atmosphere at Europa,Adv. Space Res., 2001, vol. 27, pp. 1881-1888.Google Scholar
  43. Shematovich, V.I., Pyarnpuu A.A., Cheredov V.V., and Tsvetkov G.A., Structural Stochastic Simulation of Kinetic Systems,Mat. Model., 2002, vol. 14, pp. 96-102.Google Scholar
  44. Shematovich, V.I., Bisikalo, D.V., and Gérard, J.-C., A Kinetic Model of the Formation of the Hot Oxygen Geocorona. I. Quiet Geomagnetic Conditions,J. Geophys. Res., 1994b, vol. 99, pp. 217-226.Google Scholar
  45. Shematovich, V.I., Bisikalo, D.V., and Gérard, J.-C., Non Thermal Nitrogen Atoms in the Earth's Thermosphere 1. Kinetics of Hot N(4S),Geophys. Res. Lett., 1991, vol. 18, pp. 1691-1995.Google Scholar
  46. Shematovich, V.I., Bisikalo, D.V., and Gérard, J.-C., The Thermospheric Odd Nitrogen Photochemistry: Role of Non Thermal N(4S) Atoms,Ann. Geophys., 1992, vol. 10, pp. 792-802.Google Scholar
  47. Shematovich, V.I., Bisikalo, D.V., and Gerard, Zh. K., Suprathermal Particles in Planetary Atmospheres,Neustoichivye protsessy vo Vselennoi(Instable Processes in the Universe), Moscow: Kosmoinform, 1994a, pp. 230-260.Google Scholar
  48. Shematovich, V.I., Numerical Stochastic Simulation of Atmospheric Photo-Chemistry Kinetics,Matematicheskie zadachi prikladnoi aeronomii(Mathematical Problems of Applied Aeronomy), Moscow: Inst. Prikl. Mat. im. M.V. Keldysha, 1987, pp. 199-209.Google Scholar
  49. Shematovich, V.I., Gérard, J.-C., Bisikalo, D.V., and Hubert, B., Thermalization of O(1D) Atoms in the Thermosphere,J. Geophys. Res., 1999, vol. 104, pp. 4287-4295.Google Scholar
  50. Shematovich, V.I., Kinetic Modeling of Suprathermal Nitrogen Atoms in the Atmosphere of Titan: I. Sources,Astron. Vestn., 1998, vol. 32,no. 5, pp. 435-444 [Sol. Syst. Res.(Engl. Transl.), vol. 32, no. 5, p. 384].Google Scholar
  51. Shematovich, V.I., Kinetic Modeling of Suprathermal Nitrogen Atoms in the Atmosphere of Titan: II. Escape Due to Dissociation Processes,Astron. Vestn., 1999, vol. 33,no. 1, pp. 36-44 [Sol. Syst. Res.(Engl. Transl.), vol. 33, no. 1, p. 32].Google Scholar
  52. Shematovich, V.I., Tully, C., and Johnson, R.E., Suprathermal Nitrogen Atoms and Molecules in Titan'S Corona,Adv. Space Res., 2001, vol. 27, pp. 1875-1880.Google Scholar
  53. Shematovich, V.I., Zmievskaya, G.I., and Pyarnpuu, A.A., Stochastic Simulation of Uniformly Expanding Rarefied Gases,Dokl. Akad. Nauk SSSR, 1982, vol. 266, pp. 573-576 [Sov. Phys. Dokl.(Engl. Transl.), vol. 27, p. 661].Google Scholar
  54. Shizgal, B.D. and Arkos, G.G., Nonthermal Escape of the Atmospheres of Venus, Earth, and Mars,Rev. Geophys., 1996, vol. 34, pp. 483-505.Google Scholar
  55. Shizgal, B.D. and Lindenfeld, M.J., Energy Distribution Function of Translationally Hot O(3P) Atoms in the Atmosphere of Earth,Planet. Space Sci., 1979, vol. 25, pp. 1321-1332.Google Scholar
  56. Smith, F.T., Chemical Reactions in High-Temperature Gases as Collision Process,Kinetic Processes in Gases and Plasmas, Hochstim, A.R., Ed., New York: Academic, 1969, pp. 257-280.Google Scholar
  57. Solomon, S., The Possible Effects of Translationally Excited Nitrogen Atoms on Lower Thermospheric Odd Nitrogen,Planet. Space Sci., 1983, vol. 31, pp. 135-144.Google Scholar
  58. Stantcheva, T., Shematovich, V.I., and Herbst, E., On the Master Equation Approach to Diffusive Grain-Surface Chemistry: the H, O, CO System,Astron. Astrophys., 2002, vol. 391, pp. 1069-1078.Google Scholar
  59. Wayne, R.P.,Chemistry of Atmospheres, Oxford: Clarendon, 1991.Google Scholar
  60. Whipple, E.C., Van Zandt, T.E., and Love, C.H., Kinetic Theory of Warm Atoms — Non-Maxwellian Velocity Distributions and Resulting Doppler-Broadened Emission-Line Profiles,J. Chem. Phys., 1975, vol. 62, pp. 3024-3030.Google Scholar
  61. Yanitskii, V.E., Weighted Schemes for Patterns of Statistical Method of Particles in Cells,Soobshcheniya po prikladnoi matematike(Reports on Applied Mathematics), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 1990.Google Scholar
  62. Yee, J.-H., Meriwether, J.W., and Hays, P.B., Detection of a Corona of Fast Oxygen Atoms during Solar Maximum,J. Geophys. Res., 1980, vol. 85, pp. 3396-3400.Google Scholar
  63. Zmievskaya, G.I., Marov, M.Ya., and Shematovich, V.I., Numerical Investigation on Photochemical Processes in Upper Atmosphere. I. Stochastic Simulation of the Influence of Solar Radiation on Rarified Multicomponent Gas,Nauchn. Inform. Astrosoveta Akad. Nauk SSSR, 1982, vol. 55, pp. 144-159.Google Scholar
  64. Zmievskaya, G.I., Pyarnpuu, A.A., and Shematovich, V.I., Simulation of Physical and Chemical Processes in Gas Mixtures,Dokl. Akad. Nauk SSSR, 1979, vol. 247, pp. 561-564 [Sov. Phys. Dokl.(Engl. Transl.), vol. 24, p. 692].Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • V. I. Shematovich
    • 1
  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations