Solar Physics

, Volume 222, Issue 2, pp 203–228 | Cite as

Wavelet Analysis: the effect of varying basic wavelet parameters

  • I. De Moortel
  • S.A. Munday
  • A.W. Hood


The most commonly used methods to analyse (observed) quasi-periodic signals are standard techniques such as Fourier and wavelet analysis. Whereas a Fourier transform provides information on the dominant frequencies, wavelet analysis has the added advantage of providing the time localisation of the various frequency components. The usefulness and robustness of wavelet analysis is investigated by varying the different parameters which characterise the `mother' wavelet. We examine the effect of varying these parameters on the temporal and frequency resolution and the damping profile, which can be obtained from the wavelet transform. Additionally, the effect of a changing periodicity on the wavelet transform is investigated. Both simple harmonic functions and intensity oscillations observed by TRACE are used to demonstrate the various advantages and disadvantages of the different methods. In general, using the Paul wavelet or a smaller value of the wavelet parameter k provides a better time resolution, whereas the Morlet wavelet or a larger value of k improves the frequency resolution. Overall, our results indicate that great care is needed when using a wavelet analysis and that all the possible factors that could affect the transform should be taken into consideration.


Fourier Fourier Transform Harmonic Function Time Resolution Time Localisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschwanden, M. J., Kliem, B., Schwarz, U., Kurths, J., Dennis, B.R., and Schwartz, R. A.: 1998, Astrophys. J. 505, 941.CrossRefGoogle Scholar
  2. Banerjee, D., O'Shea, E., and Doyle, J. G.: 2000, Astron. Astrophys. 355, 1152.Google Scholar
  3. Baudin, F., Bocchialini, K., and Koutchmy, S.: 1996, Astron. Astrophys. 314,L9.Google Scholar
  4. Bocchialini, K. and Baudin, F.: 1995, Astron. Astrophys. 299, 893.Google Scholar
  5. Christopoulou, E. B., Skodras, A., Georgakilas, A. A., and Koutchmy, S.: 2003, Astrophys. J. 591, 416.CrossRefGoogle Scholar
  6. De Moortel, I. and Hood, A. W.: 2000, Astron. Astrophys. 363, 269.Google Scholar
  7. De Moortel, I., Hood, A. W., and Ireland, J.: 2002, Astron. Astrophys. 381, 311.CrossRefGoogle Scholar
  8. De Moortel, I., Ireland, J., Hood, A. W., and Walsh, R. W.: 2002, Solar Phys. 209, 61.CrossRefGoogle Scholar
  9. Farge, M.: 1992,Ann. Rev. Fluid Mech. 24, 395.CrossRefGoogle Scholar
  10. Frick, P., Galyagin, D., Hoyt, D. V., Nesme-Ribes, E., Schatten, K. H., Sokolo., D., and Zakharov, V.: 1997, Astron. Astrophys. 328, 670.Google Scholar
  11. Ireland, J. and De Moortel, I.: 2002, Astron. Astrophys. 391, 339.CrossRefGoogle Scholar
  12. Komm, R. W.: 1994, ASP Conference Series 68, 24.Google Scholar
  13. McAteer, R. J. T., Gallagher, P. T., Williams, D. R., Mathioudakis, M., Bloomfield, D. S., Phillips, K. J. H., and Keenan, F. P.: 2003, Astrophys. J. 587, 806.CrossRefGoogle Scholar
  14. McAteer, R. J. T., Gallagher, P. T., Bloomfield, D. S., Williams, D. R., Mathioudakis, M., and Keenan, F. P.: 2004, Astrophys. J. 602, 436.CrossRefGoogle Scholar
  15. McIntosh, S. W. and Smillie, D. G.: 2004, Astrophys. J., in press.Google Scholar
  16. Molowny-Horas, R., Oliver, R., Ballester, J. L., and Baudin, F.: 1997, Solar Phys. 172, 181.CrossRefGoogle Scholar
  17. Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., and Davila, J. M.: 1999, Science 285, 862.CrossRefGoogle Scholar
  18. Ofman, L., Romoli, M., Poletto, G., Noci, C., and Kohl, J. L.: 2000, Astrophys. J. 529, 592.CrossRefGoogle Scholar
  19. O'Shea, E., Banerjee, D., Doyle, J. G., Fleck, B., and Murtagh, F.: 2001, Astron. Astrophys. 368Google Scholar
  20. Roberts, B., Edwin, P. M., and Benz, A. O.: 1984, Astrophys. J. 279, 857.CrossRefGoogle Scholar
  21. Terradas, J.: 2002, PhD Thesis, Universitat de les Illes Balears.Google Scholar
  22. Torrence, C. and Compo, G. P.: 1998, Bull. Amer. Meteor. Soc. 79, 61.CrossRefGoogle Scholar
  23. Ugarte-Urra, I., Doyle, J. G., Madjarska, M. S., and O'Shea, E. O.: 2004, Astron. Astrophys., in press.Google Scholar
  24. Vigouroux, A. and Delache, Ph.: 1993, Astron. Astrophys. 278, 607.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • I. De Moortel
    • 1
  • S.A. Munday
    • 1
  • A.W. Hood
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsFifeScotland

Personalised recommendations